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ABSTRACT 

 
A rapidly growing technique for producing new water is desalination of seawater and 

brackish water, in which water with high dissolved solids content is converted to water 

with very low dissolved solids content. Desalination practice existing by desalination 

plants performance is a remarkable area in which scientists and researchers investigate and 

contribute to plant enhancement. In the Gaza strip maximum of the drinking water is 

produced through small private desalination facilities and RO housing units. 

 
In view of understanding the status and performance of desalination plants in the Gaza 

strip, it was necessary to assess the feed and permeate water quality and develop several 

Artificial Neural Network (ANN) models to predict various water quality parameters. 

Hence, this study was undertaken with this objective. Although there have been a number 

of studies on the status of desalinated water quality pollution, however to the best of our 

knowledge this study is the first effort to use (ANN) technology for the prediction of 

desalination plants performance in the Gaza strip through predicting a number of water 

quality variables.   

 
Five desalination plants were selected and monitored in terms of feed and permeate quality 

towards understanding the current status of the desalination plants and develop ANN 

models for predicting their performance. 

 
All generated data were entered as Microsoft Excel sheets, uploaded to Minitab software 

and SPSS, and analysed using min, max, mean and standard deviation. In addition, the 

Pearson correlation coefficient and paired sample t-test were used to detect significant 

water quality variations at different desalination plants.   

 
The feed water quality of selected plants was found to be noncompliant with WHO and 

Palestinian Standards Institute in furthermost samples which is in difference with the 

permeate values of all plants. The assessment made during this study may help in the better 

understanding of the current situation of desalination plants in the Gaza strip.  

 
The collected samples were chemically analysed at the laboratories of the Ministry of 

National Economy and the Institute of Water and Environment at Al-Azhar University. At 

the initial stage of water quality variables prediction, water samples were collected from 
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five desalination plants, over a period of six months beginning from March to September 

2013. The training and testing of the developed ANN models was carried out using neural 

network toolbox in the MATLAB. Two types of feedforward networks have been used 

including Multilayer Perceptron (MLP) and Radial Basis Function (RBF).  

 
Several different MLP neural networks algorithms and RBF network have been trained and 

developed with reference to feed water parameters: pressure, pH and conductivity to 

predict permeate flowrate next week values. MLP and RBF neural networks have been 

used for predicting the next week TDS concentrations. Both networks are trained and 

developed with reference to permeate water quality variables including: water temperature, 

pH, conductivity and pressure. MLP and RBF neural networks have also been trained with 

the previous four parameters to predict chlorides and nitrates level. MLP and RBF neural 

networks have been trained and developed with reference to three water quality parameters 

including pressure, chloride and conductivity to predict magnesium concentrations.  

 

Prediction results prove that both types of networks are highly satisfactory for predicting 

TDS and chloride water quality parameters and satisfactory for predicting permeate 

flowrate and nitrate concentrations. As compared with the TDS, chloride, flowrate, and 

nitrate developed models, magnesium model showed less accuracy prediction results.  

Results of the developed networks have also been compared with the statistical model and 

found that ANN predictions are better than the conventional methods.  
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  الملخص

%نتاج مياه جديدة حيث يتم تحويل المياه ذات تعد تحلية المياه قليلة الملوحة و مياه البحر إحدى التقنيات السريعة النمو 

المحتوى العالي من المواد الصلبة الذائبة إلى مياه ذات محتوى منخفض جداً من المواد الصلبة الذائبة. إن أداء محطات 

جال التحلية القائمة تعتبر مجال علمي فريد من نوعه عمل العلماء والباحثين من خ=له على التوسع في دراسة ھذا الم

من أجل المساھمة في تطوير وتعزيز أداء عمل المحطات. إن ما يتم إنتاجه في قطاع غزة من الحد اBقصى لمياه 

  ح العكسي على المستوى المنزلي.الشرب يتم من خ=ل مرافق التحلية الصغيرة الخاصة وكذلك وحدات التناض

كان من الضروري تقييم جودة مياه التغذية, والمياه  في ضوء فھم حالة وأداء محطات تحلية المياه في قطاع غزة فإنه

المح=ة الناتجة من تلك المحطات المختارة لھذه الدراسة؛ ومن ثم تطوير العديد من نماذج الشبكات العصبية 

اZصطناعية للتنبؤ بقيم بعض العناصر المھمة في تحديد نوعية وجودة المياه وبالتالي أجريت ھذه الدراسة تبعاً لھذا 

الھدف. على الرغم من وجود عدد من الدراسات واBبحاث المنشورة بخصوص  حالة تلوث نوعية المياه المح=ة؛ ولكن 

من خ=ل التنبؤ  في قطاع غزة لعلمنا فإن ھذه الدراسة ھي أول جھد Zستخدام تكنولوجيا التنبؤ بأداء محطات التحلية

  يرات لخصائص نوعية وجودة المياه.بعدد من المتغ

لقد تم اختيار خمس محطات لتحلية المياه ومراقبة جودتھا لكل من مياه التغذية والمياه المح=ة الناتجة باتجاه فھم الوضع  

  عصبية للتنبؤ بأداء تلك المحطات.الحالي لھذه المحطات ومن ثم تطوير عدد من نماذج الشبكات اZصطناعية ال

, وبرنامج التحليل Minitab ه الدراسة عبر برنامج مايكروسوفت اكسل, لقد تم إدخال جميع البيانات المتولدة خ=ل ھذ

, حيث تم تحليل جميع البيانات وحساب الحد اBدنى والحد اBقصى والمتوسط الحسابي, وكذلك  SPSSاZحصائي 

ت في نوعية اZنحراف المعياري با%ضافة الى حساب معامل ارتباط بيرسون واختبار اZقتران تي للكشف عن اZخت=فا

  ياه في محطات التحلية المختلفة. الم

إن جودة مياه التغذية لمحطات التحلية المختارة كانت غير متوافقة مع منظمة الصحة العالمية ومؤسسة المواصفات 

لذي والمقاييس الفلسطينية في أغلب العينات, وذلك بخ=ف المياه المح=ة الناتجة من تللك المحطات. وقد ساعد التقييم ا

  الي لمحطات التحلية في قطاع غزة.قدم من خ=ل ھذه الدراسة في فھم أفضل للوضع الح

مختبرات معھد  خ=ل ھذه الدراسة حللت كيميائياً في مختبرات وزارة اZقتصاد الوطني وجمعھا  التي تمالعينات إن 

المياه من عينات جمعت  ,في المرحلة اBولية من التنبؤ بمتغيرات جودة المياه .جامعة اBزھرعلوم المياه والبيئة في 

  م. 2013داية من مارس الى سبتمبر خمس محطات لتحلية المياه في قطاع غزة على مدى ستة أشھر ب

التدريب واختبار نماذج الشبكات العصبية اZصطناعية المطورة من خ=ل استخدام أدوات الشبكات العصبية  جريّ أُ 

) و تشمل شبكة اZدراك ذات الطبقات  feedforward. وقد استخدم نوعين من الشبكات اBمامية (  Matlabفي

 Radial Basis( RBFاسي و شبكة وظائف اZشعاع اBس Multilayer Perceptron )(  MLPالمتعددة 

Function   وقد تم تدريب العديد من شبكات الخوارزميات.(MLP  المختلفة وشبكةRBF  وتطويرھا بالرجوع الى

وذلك للتنبؤ بمعدل التدفق للمياه المح=ة  والموصلية الكھربيةمياه, والرقم الھيدروجيني, الضغط : عناصر مياه التغذية
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للتنبؤ بتراكيز المواد الصلبة الذائبة Bسبوع مقبل, وذلك  MLP  ,RBFالناتجة Bسبوع مقبل. وقد استخدمت شبكات 

الماء ودرجة  درجة حرارة وتشمل كل من الناتجة بتدريب تلك الشبكات وتطويرھا بالرجوع الى متغيرات نوعية المياه

لنفس المتغيرات السابقة   RBFو  MLP لعصبية بنوعيھاالشبكات ا . كما تم تدريبوالضغط الحموضة والموصلية

وتطويرھا بالرجوع إلى ث=ثة  RBFو  MLP الشبكات العصبية تم تدريب كذلك. ووالنترات للتنبؤ بمستوى الكلوريدات

  . وذلك للتنبؤ بتراكيز الماغنيسيوممعايير لنوعية المياه وھي الضغط والكلوريد والموصلية الكھربية 

  

التنبؤ أثبتت أن ك= النوعين من الشبكات مرضية للغاية للتنبؤ بالمواد الصلبة الذائبة والكلوريد وكذلك مرضية إن نتائج 

المواد الصلبة الذائبة والكلوريد اذج المطورة لكل من للتنبؤ بتراكيز معدل التدفق والنترات؛ بالمقارنة بما سبق من النم

لماغنيسيوم نتائج أقل دقة للتنبؤ. وبمقارنة نتائج نماذج الشبكات المطورة مع أظھر نموذج افقد  ,النتراتمعدل التدفق وو

  عية ھي أفضل من الطرق التقليدية.النموذج ا%حصائي والتي أظھرت أن التنبؤات بالشبكة العصبية اZصطنا

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

IX 

  

TABLE OF CONTENTS 

 

 
Dedication III 
Acknowledgements IV 
Abstract V 
Abstract in Arabic VII 
List of Notations XII 
List of Abbreviations  XIV 
List of Tables XV 
List of Figures XVII 
List of Annexes  XIX 
 
CHAPTER 1     INTRODUCTION 

 
1 

1.1 Background  1 
1.2 Artificial neural network modelling  2 
1.3 Study aim and objectives        3 
1.4 Significance of the study 3 

                           1.5 Organization of the thesis  4 
 
CHAPTER 2     LITERATURE REVIEW   

 
5 

                           2.1 Introduction and establishing the need for reverse  
                                 osmosis                      

5 

                           2.2 Understanding desalination 6 
                           2.3 Working of a reverse osmosis system 7 
                           2.4 Reverse osmosis performance 8 
                           2.5 Introduction to artificial neural network  10 
                              2.5.1 History of artificial neural network  10 
                              2.5.2 Artificial neural networks (ANNs) 12 
                              2.5.3 Weight vector of an ANN 13 
                              2.5.4 Architectures of artificial neural networks 13 
                              2.5.5 ANN types  15 
                                 2.5.5.1 Multi-layered perceptron (MLP) networks   16 
                                    2.5.5.1.1 Back-propagation algorithm 16 
                                    2.5.5.1.2 Improved back-propagation     17 
                                    2.5.5.1.3 Back-propagation with L-M algorithm  17 
                                    2.5.5.1.4 Approximation capabilities of MLP 
                                                   networks          

17 

                                 2.5.5.2 Radial basis function neural network (RBF-NN)            18 
                                    2.5.5.2.1 Training              20 
                           2.6 ANN for modelling desalination units performance 20 
 
CHAPTER 3     METHODOLOGY AND NEURAL NETWORK  
                          APPROACH  

 
24 

                           3.1  Collection of water samples 24 
                           3.2  Processing and analysis of water samples 25 
                              3.2.1 Water temperature 26 
                              3.2.2  Pressure     26 



 

X 

  

                              3.2.3 Water flowrate  26 
                              3.2.4 Electrical conductivity 26 
                              3.2.5 pH 26 
                              3.2.6 Total dissolved solids  27 
                              3.2.7 Total hardness  27 
                              3.2.8 Chloride 27 
                              3.2.9 Calcium 27 
                              3.2.10 Magnesium 27 
                              3.2.11 Nitrate                       28 
                           3.3 ANN models development approaches                                       28 
                              3.3.1 Data collection                                                      29 
                              3.3.2 Data divisions  30 
                              3.3.3 Choice of performance criteria 30 
                              3.3.4 Data processing 31 
                              3.3.5 Training 31 
                              3.3.6 Validation  32 
                              3.3.7 Testing 32 
                              3.3.8 Developed ANN models procedure 33 
                           3.4 Statistical analysis  tools 35 
 
CHAPTER 4     STATUS OF DESALINATION PLANTS IN THE GAZA 
                          STRIP                                                                                                              

36 

                          4.1 Existing desalination plants  36 
                          4.2 Water quality 38 
                          4.3 Water balance and estimated demand 39 
                          4.4 Unconventional water resources  40 
                          4.5 Impacts of desalination plants  41 
                             4.5.1 Energy utilization 41 
                             4.5.2 Land precondition 42 
                             4.5.3 Environmental aspects 43 
                                4.5.3.1 Continuation impact 43 
                                4.5.3.2 Groundwater pollution 44 
                                4.5.3.3 Effects on marine environment 45 
                                4.5.3.4 Brackish water and seawater intrusion  47 
                                4.5.3.5 Quality of desalinated water 48 
                          4.6 Concluding remarks 48 
 
CHAPTER 5     RESULTS AND DISCUSSION 

 
50 

                          5.1 Statistical analysis of water quality data 50 
                             5.1.1 Water quality parameters 50 
                                5.1.1.1 Water temperature 50 
                                5.1.1.2 Pressure  51 
                                5.1.1.3 Water flowrate 52 
                                5.1.1.4 pH 53 
                                5.1.1.5 Electrical conductivity  54 
                                5.1.1.6 Turbidity 55 
                                5.1.1.7 Total dissolved solids  56 
                                5.1.1.8 Total hardness  57 



 

XI 

  

                                5.1.1.9 Chloride 58 
                                5.1.1.10 Nitrate  59 
                                5.1.1.11 Calcium 60 
                                5.1.1.12 Magnesium 61 
                            5.1.2 Water quality parameters Pearson's correlation 62 
                            5.1.3 Spatial variations analysis 64 
                         5.2 Developed ANN predictive models 66 
                            5.2.1 Permeate flowrate model  67 
                            5.2.2 Total dissolved solid (TDS) model  74 
                            5.2.3 Chloride model  79 
                            5.2.4 Nitrate model  84 
                            5.2.5 Magnesium model  89 
                            5.2.6 ANN developed models verification   94 
 
CHAPTER 6     CONCLUSIONS AND RECOMMENDATIONS 

 
96 

                          6.1 Conclusions  96 
                          6.2 Suggestions and recommendations   98 
 
REFERENCES 

 
101 

ANNEXES  112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

XII 

  

LIST OF NOTATIONS 

 

mg/l  Milligram per liter 
MCM   million m3 = Million cubic meter 
MCM/yr.  million m3/y = Million cubic meter per year 
Mm3  Million cubic meter 
TDS  Total dissolved solids 
pH Potential of  hydrogen 
%    Percentage 
R2  Coefficient of determination 
ºC   Degree centigrade 
Q  Number of output units 
P Number of input units 

wn   Vector of connection weights 
γn   Step size 
dn   Vector defining the direction of descent & n denotes the iteration 

number 
min  Minimum 
max   Maximum 
w1   Weight connections between input layer and hidden layer 
w2    Weight connections between hidden layer and output layer 
b1 Biases between input layer and hidden layer     
b2      Biases between hidden layer and output layer 
Mg  Magnesium 
Ca  Calcium 
µs/cm  Micro semen's per centimeter 
MW  Mega Watt 
kWh  Kilowatt hour 
ppm Part per million  

m3/d   m3/day = Cubic meter per day 
mm   Millimeter 
EC   Electrical conductivity 
µm  Micrometer 
S.D  Standard deviation 
S.E  Standard error 
m3/h  Cubic meter per hour 
NO3

- Nitrate   
TH  Total hardness 



 

XIII 

  

NTU  Nephelometric turbidity units 
P  Pressure 
NaCl Sodium chloride 
CaCl2 Calcium chloride 
KCl Potassium chloride 
NaOH Sodium hydroxide 

CO2 Carbon dioxide  

HCO3
- Bicarbonate 

CO3
2- Carbonates  

CaCO3 Calcium carbonate  

Ca2+ Calcium ion  

Mg2+ Magnesium ion  

 

                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

XIV 

  

LIST OF ABBREVIATIONS 

 

ASP Actual state-of-the-plant 

ADALINE Adaptive linear neuron or later adaptive linear element  

ANN Artificial neural networks 

BP Back propagation 

BPN Back-propagation network 

BFGS  Broydon fletcher goldfarb shanno (method)  

IEEE Institute of electrical and electronic engineers 

IBM International business machines 

LM Levenberg marquardt 

MATLAB 
Matrix laboratory  
(The language of technical computing) 

MAE Mean absolute error 

MSE Mean squared error 

MED Multi effect distillation  

MLP Multilayer perceptron 

MADALINE Multiple Adeline   

MLR Multiple linear regression 

MSF Multistage flash distillation  

NF Nano-filtration 

NN Neural network 

OLS Orthogonal least squares 

PWA Palestinian water authority 

PFR Permeate flowrate  

RBF Radial basis function 

RBFNN Radial basis function neural network 

RO Reverse osmosis 

SWRO Sea water reverse osmosis 

SOM Self-organized map 

STM Short-term memory 

SDI Silt density index  

SPSS Statistical package for the social science  

SVR Support vector regression 

TECC Technical engineering consulting company   

TMP Trans-membrane pressure 

VC Vapor compression  

VQ Vector quantization 

WHO World health organization 

 

 



 

XV 

  

LIST OF TABLES 

 

Table 3.1:  Methodology of the developed MLP and RBF NN models 34 

Table 4.1:  Large scale brackish water desalination plants in the Gaza Strip 37 

Table 4.2:  Water balance in the Gaza Strip for 2010 39 

Table 4.3:  Water demand forecast 40 

Table 4.4:  Characteristics of discharged brine from desalination plants in 
the Gaza Strip 

47 

Table 5.1:  Temperature statistical analysis among five desalination plants in 
the Gaza Strip      

51 

Table 5.2:  Pressure statistical analysis among five desalination plants in the                
Gaza Strip         

52 

Table 5.3:  Flowrate statistical analysis among five desalination plants in the 
Gaza Strip           

53 

Table 5.4:  pH statistical analysis among five desalination plants in the Gaza            
Strip 

54 

Table 5.5:  Water conductivity statistical analysis among five desalination             
plants in the Gaza Strip    

55 

Table 5.6:  Water turbidity statistical analysis among five desalination plants 
in the Gaza Strip              

56 

Table 5.7:  Water TDS statistical analysis among five desalination plants in 
the Gaza Strip        

57 

Table 5.8:  Water hardness statistical analysis among five desalination plants 
in the Gaza Strip             

58 

Table 5.9:  Water chloride statistical analysis among five desalination plants 
in the Gaza Strip     

59 

Table.5.10:  Nitrate concentrations statistical analysis among five desalination         
plants in Gaza Strip 

60 

Table.5.11:  Water calcium statistical analysis among five desalination plants 
in the Gaza Strip              

61 

Table 5.12:  Water magnesium statistical analysis among five desalination 
plants in the Gaza Strip         

62 

Table 5.13: Pearson's correlation coefficient for values of permeate water              
parameters   

63 

Table.5.14: 
  

Paired t-test (p-value) & Pearson correlation (r) results for 
permeate water parameters including: (temperature, pressure, 
flow rate, pH, turbidity an EC)               

64 

Table 5.15: 
  

Paired t-test (p-value) & Pearson correlation (r) results for 
permeate water parameters including: (TDS, Cl-, hardness, 
nitrate, Ca2+ and Mg2+)                

65 

Table 5.16:  Summary of developed ANN models and MLR results for 
predicting PFR 

69 

Table 5.17: Summary of developed ANN models and MLR results for 
predicting TDS      

76 



 

XVI 

  

Table 5.18:  Summary of developed ANN models and MLR results for 
predicting chlorides 

82 

Table 5.19:  Summary of developed ANN models and MLR results for 
predicting nitrates               

86 

Table 5.20:  Summary of ANN models and MLR prediction results  for       
magnesium     

92 

Table 5.21: The developed ANN models verification prediction results 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

XVII 

  

LIST OF FIGURES 

 

Fig.2.1:   A simple neuron 13 

Fig.3.1:   Locations map of the selected desalination plants in the Gaza Strip 25 

Fig.4.1:   Locations map of the RO desalination plants in the Gaza Strip 36 

Fig.5.1:   Permeate flowrate MLP training model performance 68 

Fig.5.2:   Permeate flowrate RBF training model performance 68 

Fig.5.3:   Permeate flowrate MLP Model regression for training and testing        
data sets    

69 

Fig.5.4:   Comparison of permeate flowrate MLP model-training prediction 
results   

70 

Fig.5.5:   Comparison of permeate flowrate MLP model-testing prediction  
results     

70 

Fig. 5.6:  Permeate flowrate RBF Model regression for training and testing        
data sets   

71 

Fig. 5.7:  Comparison of permeate flowrate RBF model-training prediction 
results   

71 

Fig. 5.8:  Comparison of permeate flowrate RBF model-testing prediction 
results 

72 

Fig. 5.9:  Permeate flowrate MLR model regression for training and testing  
data sets  

72 

Fig.5.10:  Comparison of permeate flowrate MLR model-training prediction 
results 

73 

Fig.5.11:  Comparison of permeate flowrate MLR model-testing prediction 
results  

73 

Fig.5.12:  Comparison of flowrate MLP, RBF&MLR model-testing 
prediction results            

74 

Fig.5.13: Permeate TDS MLP training model performance 76 

Fig.5.14: Permeate TDS RBF training model performance 76 

Fig 5.15: TDS MLP model regression for training and testing data sets 77 

Fig.5.16: TDS RBF model regression for training and testing data sets 77 

Fig.5.17: TDS MLR model regression for training and testing data sets 78 

Fig.5.18:  Comparison of TDS MLP, RBF&MLR model-testing prediction 
results    

78 

Fig.5.19: Product chloride MLP training model performance 80 

Fig.5.20: Product chloride RBF training model performance 80 

Fig 5.21: Chlorides MLP model regression for training and testing data sets 81 

Fig 5.22: Chlorides RBF model regression for training and testing data sets 81 

Fig 5.23: Chlorides MLR model regression for training and testing data sets 82 



 

XVIII 

  

Fig 5.24:  Comparison of chloride MLP, RBF&MLR model-training       
prediction results         

83 

Fig 5.25:  Comparison of chloride MLP, RBF&MLR model-testing          
prediction results        

83 

Fig.5.26: Product nitrates MLP training model performance 85 

Fig.5.27: Product nitrates RBF training model performance 86 

Fig.5.28: Nitrates MLP model regression for training and testing data sets 86 

Fig.5.29: Nitrates RBF model regression for training and testing data sets 87 

Fig.5.30: Nitrates MLR model regression for training and testing data sets 87 

Fig 5.31:  Comparison of nitrates MLP, RBF&MLR models-training    
prediction results  

88 

Fig 5.32:  Comparison of nitrates MLP, RBF&MLR models-testing   
prediction results    

88 

Fig.5.33: Product magnesium MLP training model performance 90 

Fig.5.34: Product magnesium RBF training model performance 90 

Fig.5.35: Magnesium MLP model regression for training and testing data 
sets 

91 

Fig.5.36: Magnesium RBF model regression for training and testing data 
sets 

91 

Fig.5.37: Magnesium MLR model regression for training and testing data 
sets 

92 

Fig 5.38:  Comparison of Mg2+ MLP, RBF&MLR models-training 
prediction  results      

93 

Fig 5.39:  Comparison of Mg2+ MLP, RBF&MLR models-testing prediction  
results 

93 

 

 

 

 

 

 

 

 

 

 

 



 

XIX 

  

LIST OF ANNEXES 

 

ANNEX 1 :  FEED AND PERMEATE  WATER QUALITY  
                     PARAMETERS  

113 

ANNEX 1.A  FEED WATER QUALITY PARAMETERS 114 

      Annex 1.1-A (Al-Salam Plant) 114 

      Annex 1.2-A (Al-Sharqia Plant) 115 

      Annex 1.3-A (Al-Balad Plant) 116 

      Annex 1.4-A (Hanneaf Plant) 117 

      Annex 1.5-A (Al-Radwan Plant) 118 

ANNEX 1.B  PERMEATE WATER QUALITY PARAMETERS 119 

      Annex 1.1-B (Al-Salam Plant) 119 

      Annex 1.2-B (Al-Sharqia Plant) 120 

      Annex 1.3-B (Al-Balad Plant) 121 

      Annex 1.4-B (Hanneaf Plant) 122 

      Annex 1.5-B (Al-Radwan Plant) 123 

ANNEX 2 : WEIGHTS AND BIASES OF THE DEVELOPED ANN   
                     MODELS 

124 

      Annex 2.1  Permeate Flowrate Model 125 

      Annex 2.2  TDS Model 127 

      Annex 2.3  Chloride Model 129 

      Annex 2.4  Nitrate Model 132 

      Annex 2.5  Magnesium Model 135 

 

 

 

 



Chapter -1 Introduction 

 

1 

  

CHAPTER 1 

 

INTRODUCTION 
 

1.1 BACKGROUND  

  

Water is the most valued and important natural resource in the Middle East in broad-

spectrum and in the Gaza strip in particular. It is fundamental for socioeconomic growth 

and environmental sustainability. The Gaza strip is mostly in calamitous situation that 

needs urgent and serious efforts to improve the water status on conditions of both quality 

and quantity.  

 
The groundwater in the Gaza strip aquifer is approximately brackish excluding some fresh 

water in the appearance of shallow lenses. Consequently, the quantity of fresh groundwater 

is negligible and exists only in some areas in the Gaza strip for example Beit Lahia. 

Desalination of brackish and seawater appears to be promising, mainly in the absence of 

any other option in the Gaza strip. Though, utilizing desalination method as an alternative 

water supply entails many challenges such as energy cost and environmental 

characteristics (Hamdan, 2012). On one hand, confidence on desalination as a source of 

water supply can solve the increasing issue of water shortage in the vicinity and prevail 

over the deterioration problem of water quality. The securing of potable water for drinking  

purpose to the community in the Gaza strip is becoming an important goal to be 

implemented by the Palestinian Water Authority (PWA). 

 
However, economic desalination of brackish and seawater is at the present a global 

ambition that has concerned extensive governmental and public awareness not only in arid 

areas but also in other regions in the world. Desalination entails the removal of salts and 

biological materials from seawater or brackish water to produce fresh water. There are a 

number of desalination techniques commercially are used. They are including: vapor 

compression distillation, electro-dialysis, multi-stage flash distillation; and reverse osmosis 

(Baalousha, 2006). 
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The Palestinian Water Authority identifies water desalination as the standard approach to 

alleviate the water problem and provide people in the Gaza strip with acceptable and 

potable water quality for drinking and other purpose (EL-Sheikh et al. 2003). 

 
The important aspects of water quality modeling are the understanding, reporting and 

analysis of the results of physical, chemical and biological data for setting up measures and 

actions to control pollution. A neural network modelling is being used progressively to 

forecast and predict measurable characteristics of water bodies. The models must be 

developed according to the existing data and information about physical, chemical and 

biological parameters for numerous years of a particular part (Maier and Dandy, 2000).  

 
The finding of this research is the first step in establishing ANN model for predicting the 

performance of Reverse Osmosis (RO) desalination plants through water quality 

indicators.  

 

1.2 ARTIFICIAL NEURAL NETWORK MODELLING  

 

Artificial Neural Network (ANN) is a computing system which its structure and process is 

driven from neurons in the brain of human being. Neurons are simple components working 

in parallel (Hinton, 1992). Neural networks can be well thought-out of various 

interconnected nodes as computational elements which can take inputs and convert them 

into outputs (Parthiban et al. 2005 and Arbib, 1995). ANN is capable to be trained for 

achieving a particular function by adjusting the values of the weights between units. In 

general, ANN is attuned, or trained, so that particular inputs go ahead to a number of 

objective outputs. Artificial neural network is superior at approximating functions. 

However, there is evidence that a comparatively simple neural network can robust any 

useful function (Hagan et al. 1996). One of the individual characteristics of the artificial 

neural network is its capability to be trained from experience and patterns and then to 

adjust with changing circumstances. An additional benefit of ANN is that it can present 

quick significant answers even when the statistics to be sequenced including errors or is 

partial (Lippmann, 1987). 
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1.3 STUDY AIM AND OBJECTIVES        

 

The aim of this research work is to develop various models for predicting the permeate 

water quality indicators of the desalination plants in the Gaza strip through Artificial 

Neural Network (ANN). The main objectives of this study are: 

 
1. To evaluate the current status of the desalination plants in the Gaza strip.  

 
2. To monitor the water quality in the selected desalination plants.  

 
3. To develop an indicator Artificial Neural Network models.  

 
4. To suggest measures for controlling the water quality characteristics in the 

desalination plants.  

 

1.4 SIGNIFICANCE OF THE STUDY 

 

Desalination as non-conventional water resource offers the only rational option for meeting 

the rising demand for drinkable water for the inhabitants of Gaza strip. Water desalination 

also may play an immense role to diminish the adverse environmental impacts allied with 

lack of fresh water for at least drinking purposes and over pensiveness from the coastal 

aquifer as well.  

 
There are already various existing and proposed projects in Gaza utilizing Reverse 

Osmosis desalination technology. An important aspect of this project is to create a realistic 

and reliable model which will effectively predict the performance of reverse osmosis unit.  

 
� This study is the first effort for desalinated water quality monitoring and modeling 

of reverse osmosis plants performance in the Gaza strip.  

 
� The study will generate desalinated water characteristics data. 

 
� The information and data will be helpful to the planners, decision-makers 

administrators, and environmentalist dealing with desalinated water environmental 

issues and their impacts.  
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� The implementation of this research work will provide various water quality 

prediction models for the Gaza desalination plants. 

 
� The output of ANN developed models will help in designing a good monitoring 

and control plan for the water quality in the desalination plants. 

 

1.5 ORGANIZATION OF THE THESIS  

 

The thesis describes the results of desalinated drinking water quality monitoring 

parameters, environmental status of the desalination plants in the Gaza strip and 

development of various Artificial Neural Network models for predicting the important 

parameters of Reverse Osmosis i.e. total dissolved solids (TDS) and permeate flowrate.  

 
The thesis comprises of six chapters including the conclusions and recommendations for 

future work. Chapter one details the general background of the current state of water 

quality and quantity in Gaza, general information about artificial neural network,  aim and 

objectives of the study, and the significance of this work. Chapter two contains a detailed 

literature review on desalination and its various processes, understanding the way RO 

works and the factors that affect the RO operation performance, introduces the reader to 

artificial neural networks and the manner in which they function, and modelling of 

desalination plants performance using artificial neural network technology.  

 

Chapter three presents the processes and analysis of water samples, and the artificial 

network models development approaches. Chapter four describes status of the existing 

desalination plants in the Gaza strip and their environmental impacts. Chapter five is 

dealing with the results of water quality monitoring and development of the artificial 

neural network models to predict the performance of RO system handling different feed-

water sources and the validation of developed ANN models. Chapter six presents the 

conclusions obtained from the present study and the recommendations for future work to 

be conducted in order to improve and expand the developed ANN model to cover different 

feed and permeate-water samples.   
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CHAPTER 2 

 

LITERATURE REVIEW   
 

This chapter presents the information collected from different sources related to 

introduction and establishing the need for reverse osmosis, understanding desalination, and 

working of a reverse osmosis system, reverse osmosis performance, introduction to 

artificial neural network and ANN for modelling desalination plants performance. The 

basic core of this study is to monitor the desalinated drinking water for the purpose of 

developing a neural network models to predict some of water quality parameters for the 

purpose of desalinated water quality assessment in the Gaza strip. Conversely, modelling 

of the obtainable data over a period of time provides the key to the success of management 

measures in reducing pollution loads and improving the drinking water quality. As 

mentioned earlier, ANN models are developed for forecasting the desalinated drinking 

water quality parameters that can help to assess the load of pollutants causing public health 

risk and environmental problems. The information gathered from the literature reviews for 

this study is discussed in the following sections.                                                               

 

2.1 INTRODUCTION AND ESTABLISHING THE NEED FOR REVERSE 

OSMOSIS  

 

Aish (2010) in his study investigated the chemical and bacteriological water qualities of 

different small scale of reverse osmosis (RO) desalination business units in the Gaza strip. 

The study results were compared with World Health Organization (WHO) standards. It 

was concluded that all chemical analyses of RO produced water are within the allowable 

limits. Microbiological analyses indicate that 25% of produced water samples exceeded the 

maximum allowable rate of the total coliform. 

 
Al-Khatib and Arafat (2009) had studied the physical and chemical quality of desalinated 

water, groundwater and rain-fed cisterns in the Gaza strip. Their study revealed a clear 

superiority of quality for desalinated water, but also need to adopt better practices 

including maintenance and pre- and post-treatment in the desalination plants. 
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The major crisis associated with groundwater for future sustainability is the increase in the 

salinity. Generally groundwater is a chemically constant source of water over a long period 

of certain time. In areas close to the coast where pumping is undertaken the groundwater 

quality needs to be considered. The groundwater source quality (the aquifer) has to be 

tested in order to detect the changes in the water quality (Rengasamy, 2008).  

 
Hairston (2006) stated that to meet up with future water demands it is fundamental to have 

in place sustainable water management all in excess of desalination technologies like 

reverse osmosis without concessions on water quality. The major sources for feed-water 

used for desalination processes including: seawater, brackish groundwater, domestic and 

industrial wastewater. The desalination of seawater could provide potable drinking water to 

about 1.2 billion people worldwide who do not have access to fresh drinking water.  

 
El Sheikh et al. (2003) they prepared a strategy plan for water desalination in the Gaza 

Strip. They have discussed various types of desalination plants in their study. They 

concluded that the cost of desalination is still relatively expensive in the Gaza strip, reverse 

osmosis desalination is strongly recommended and considered as a strategic alternative in 

order to overcome the water shortage and meet the future needs of desalination.  

 

2.2 UNDERSTANDING DESALINATION 

 

Desalination is accepted worldwide and most of the plants are situated in the Middle East 

(50%), 20% in North America, 12-14% in Europe. According to the international 

desalination association a large number of these established desalination facilities mostly 

use Reverse Osmosis or Multistage flash distillation techniques for water treatment 

(Conway, 2008).  

 
Green (2005) classified the techniques for desalination into three types based on the main 

process principle. (1) Membrane process like Reverse Osmosis and Electro dialysis employ 

membranes as a physical parting process where salts and unrequired minerals are separated 

from the feed-water. Membrane separation processes are commonly used in industry as 

compared to the thermal processes due to its low energy consumption, high product 

quality, bendy design and easy setting up. (2) Thermal Process like multistage flash 
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distillation (MSF), multi effect distillation (MED) and vapor compression (VC) are based 

on the physical change in the condition of feed water. These processes need a large amount 

of energy in spite of the dissolved salts level in the water. (3) The process based on 

chemical relationship like Ion Exchange is mainly employed to produce high drinking 

water quality for industrial purposes. Such process would not be used to treat brackish or 

seawater as the feed-water.  

 
Desalination can be defined as a process that removes dissolved mineral deposits from 

feed-water sources such as brackish groundwater, seawater or industrial wastewater. It can 

also be known as the process that eliminates excess salts and un-preferred minerals from 

water. It is necessary these un-preferred minerals and excess salts is eliminated from the 

water to make it healthy for human being consumption or industrial use (Betts, 2004).  

 
Assaf (2001) has reviewed the existing and future planned desalination plants in the Gaza 

strip and their socio-economic and environmental impacts. He noted that the brine 

disposals from the desalination plants are a menacing and uncontrolled environmental 

problem in the Gaza strip.  

 
El Bana (2000) defined the desalination process as a physical method that intends to take 

out the dissolved mineral deposits from either brackish groundwater or seawater. He 

showed that the desalination method would not be a good option for being used in industry 

or tourism activities. Also reported a number of researchers and scientists suggested many 

different biotechnology systems to be used in the desalination methods in the coming 

years. 

 
In the Gaza strip preferred technology is reverse osmosis while most of the plants using it. 

The major reason for using reverse osmosis is the simplicity of the process and the 

lowering of the salinity level while handling any type of feed water. 

 

2.3 WORKING OF A REVERSE OSMOSIS SYSTEM 

 

Bou-Hamad et al. (1997) showed that the reverse osmosis system consists of three major 

system components including: pretreatment, membrane separation and post treatment 
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stabilization. Pretreatment of the feed-water is an important element of the RO system. 

This is a significant step and is made in order to prevent scaling of the membrane by 

scaling and fouling agents. Protecting the performance of the membrane during the 

operation is vital to maximize the efficiency and durability of the RO system. Pretreatment 

is important for good operation of RO equipment and may add major capital and operating 

cost to a desalination facility. However, the long term cost of not affording suitable 

pretreatment will far exceed the initial capital cost over the life time of the RO plant.  

  
Safety measures should be taken to maintain suspended solids at a good enough level in 

the source feed-water. Contemporary high performance polymeric anti scaling has been 

successful in stabilizing solutions of economical soluble salts. Biological fouling can be 

circumvented through minimizing the time when the plant is not in operation. A number of 

different types of fouling, their cause and appropriate pretreatment techniques are found 

elsewhere (Ebrahim, et al. 2001).  

 

2.4 REVERSE OSMOSIS PERFORMANCE 

 
There are confident factors which significantly affect the performance of a reverse osmosis 

system. The most important variables which affect the performance of the RO system 

including: pretreatment, membrane performance and operating conditions.   

 

Panicker et al. (2006) have observed that the feed-water quality has an enormous 

magnitude to the performance of RO system. Even though the feed-water is in general 

wastewater or water having impurities it still needs to be treated before it is allowed to pass 

through the membranes. All naturally occurring water contains some form of dissolved or 

suspended compounds. The typical inorganic compounds found in water are calcium, 

magnesium and sodium while the organic compounds include carbon, nitrogen, oxygen 

and chlorine. The objective of pretreatment processes is to reduce the pollutants that would 

damage the system major parts such as the membranes and the pressure pumps.  

 
Kumar et al. (2006) have reported that fouling is a major hindrance that prevents 

competent operation of reverse osmosis systems pollute the quantity and quality of treated 

water, and thus increase the treatment cost. Fouling is mostly caused by the inorganic 
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matter, colloidal or organic matter and bacterial matter. Inorganic fouling is the deposit of 

sparingly soluble salt on the membrane surface as a result of crystallization. It is mainly 

caused by calcium salts such as calcium carbonate and calcium sulphate.  

 
Durham and Walton (1999) along with membrane fouling the added major reasons for 

pretreatment are biological pollution and colloidal fouling. The fouling arising from 

dissolved ions found in the feed-water can be minimized by anti-scaling chemicals and 

controlling the system recovery. The problems related to fouling including: irreversible 

membrane damage, reduced flux rates and increase in the operating and capital costs. Thus, 

pretreatment promise the quality of feed water as good for preventing any drop in the RO 

system performance. The usual pretreatment technology was using deep bed filters, sand 

filters, cartridge filters, and chlorination as well as flocculation techniques. These 

conventional methods that used for pretreatment did not completely remove the suspended 

solids, bacteria and colloids. The traces of these impurities as soon as passing into the RO 

system will cause membrane fouling problem.   

 
For the Doha Reverse Osmosis Plant in Kuwait, flocculation and dual media filtration are 

the pretreatment measures for treating the seawater before feeding it to the facility. The 

pretreatment process is designed to provide the RO system with good water quality and 

required amount by regularly monitoring and assessing the silt density index (SDI), 

turbidity, pH, temperature and chlorine (Ebrahim and Malik, 1987). These same factors 

were recognized as the key criteria after conducting different trials for determining the 

suitable feed-water characteristics (Teng, et al. 2003). As utilizing a RO system for treating 

wastewater it is suggested to have a microfiltration pretreatment process for protecting the 

RO membrane from the highly corrosive and fouling action of the wastewater (Durham 

and Walton 1999).   

 
The conventional techniques use a mixture of sedimentation and diffusion to remove 

impurities. Though many particles are too small to be eliminated by sedimentation and 

some too large to be removed by diffusion. This showed the way for new technologies 

being developed for the pretreatment process. One of these is the use of continuous micro 

filtration technology. This is the most suitable pretreatment process capable of ensuring the 

highest quality of feed-water fed to the system. A micro filtration system removes 
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impurities as the feed-water flows through the micro filtration membrane. The impurities 

are held on the surface of the membrane and are removed physically. The filtrate obtained 

is free from solid suspensions, bacteria and colloids (Chakravorty and Layson, 1997).  

 

2.5 INTRODUCTION TO ARTIFICIAL NEURAL NETWORK                                       

 

An artificial neural network (ANN) is a mathematical structure designed to mimic the 

information processing functions of a network of neurons in the brain (Hinton, 1992 and 

Jensen, 1994). ANNs are highly parallel systems that process information through many 

interconnected units that respond to inputs through modifiable weights, thresholds, and 

mathematical transfer functions. Each unit processes the pattern of activity it receives from 

other units, and then recordings its response to still other units. ANNs are mostly well-

matched for problems in which large datasets comprise of complicated nonlinear relations 

among many different inputs. ANNs are intelligent to find and identify complex patterns in 

datasets that may not be well defined by a set of known processes or simple mathematical 

methods.  

 

2.5.1 History of artificial neural network  

 
The first artificial neuron model was introduced in 1943 by the neurophysiologist Warren 

McCulloch and the logician Walter Pits (McCulloch and Pitts, 1943). They have been 

modeled a simple neural network with electrical circuits.  

 
Reinforcement this concept of neurons and how they work was a book written by Donald 

Hebb. The Organization of Behavior was written in 1949. It concluded that neural 

networks paths are strengthened each time when they are used as reported by Unar (1999).  

 
Such as computers advanced into their infancy of the 1950s, it has become possible to 

begin to model the basics of these theories concerning human thought. Nathanial Rochester 

from the IBM research laboratories managed the first effort to simulate a neural network 

(Rochester, et al., 1955). At the first effort it was failed and then later efforts were 

successful. During this time the traditional computing began to blossom and, as it did, the 

importance in computing left the neural research in the background.  
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In 1956 the Dartmouth Summer Research Project on Artificial Intelligence provided an 

improvement to both artificial intelligence and neural networks (McCarthy, 1996). One of 

the good outcomes of this process was to motivate research in both the intelligent side, 

applied intelligence, as it is known through the industry, and in the much lower level 

neural processing part of the brain. In the years subsequent the Dartmouth Project, John 

von Neumann suggested duplicating simple neuron functions by using telegraph relays or 

vacuum tubes.  

 
In 1958 Frank Rosenblatt, a neuron-biologist of Cornell, introduced a perceptron model 

(Olazaran, 1996). The Perceptron, which obtained from his research studies, was built in 

hardware.  A single-layer perceptron was started to be suitable in classifying a continuous-

valued set of inputs into one of two classes. The perceptron computes a weighted sum of 

the inputs, subtracts a threshold, and passes one of two possible values out as the helpful 

outcome (Haykin, 1998).  

 
In 1959, Bernard Widrow and Marcian Hoff of Stanford have been developed models they 

named ADALINE and MADALINE (Widrow and Lehr, 1990). These models were named 

for their use of Multiple Adaptive Linear Elements. MADALINE was the first neural 

network being applied to a real world problem. It is an adaptive filter which eradicates 

echoes on phone lines. This neural network is still in practical use at present.  

 
According to Unar (1999) from the late 1960s to the early 1980s, research on ANN was 

almost absent.  

 
In 1982 several events caused a renewed interest. John Hopfield of Caltech presented a 

paper to the national Academy of Sciences (Hopfield, 1982). Hopfield's methodology was 

not to simply model brains but to build useful devices. With precision and mathematical 

analysis, he revealed how such networks could work and what they could do. At the same 

time, another affair occurred that a conference was held in Kyoto, Japan. The conference 

was named US-Japan Joint Conference on Cooperative/Competitive Neural Networks.  
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By 1985 the American Institute of Physics began what has become an annual meeting - 

Neural Networks for Computing. The work of Rumelhart et al. (1986a, 1986b) on feed-

forward neural networks was a real innovation in the history of neural networks.  

 
By the year (1987), the Institute of Electrical and Electronic Engineers (IEEE) first 

International Conference on Neural Networks depicted more than 1,800 attendees. In 

(1988) Broomhead and Lowe hosted Radial Basis Function (RBF) networks to the neural 

network subject. The concept of these networks was added by Poggio and Girosi in (1990).  

Now, neural network deliberations are arising everywhere. Their ability appears to be very 

optimistic as nature itself is the proof that this kind of thing works. So far, its future 

certainly is the key to the entire technology, lies in hardware development. Presently most 

neural network development is simply demonstrating that the principle works. 

  

2.5.2 Artificial neural networks (ANNs) 

 
The Artificial Neural Network is made with a methodical step-by-step method to enhance a 

performance norm or to monitor some implied internal limitation, which is generally 

signified as the learning imperative or process. The learning process comprises updating 

network architecture and connection weights so that a network can proficiently achieve a 

specific recognition task. In artificial neural networks, the designer selects the network 

topology, the performance function, the learning rule and the training algorithms, and the 

criterion to stop the training phase, but the system certainly adjusts the parameters (Adeoti 

and Osanaiye, 2013). 

 
Many ANN architectures are available, but multilayer networks are commonly used for 

forecasting (Zhang et al. 1998; Maier and Dandy, 2000). An ANN adapts to learn the 

relationship or mapping between input and outputs during the training process (Mas and 

Ahlfeld, 2007).  
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2.5.3 Weight vector of an ANN 

 
The weights are the connection strengths between neurons in the adjacent layers. A simple 

neuron is shown in (Fig.2.1) wi1, wi2, and wi3 are the weights associated with each of the 

connections between the inputs to a neuron and other neuron.  

 

 

Fig.2.1: A simple neuron  

 
The inputs to a neuron are weighted according to the type of the architecture of neural 

network. Supposing that there are 4 parameters applied as input data and that there are 7 

hidden neurons in the neural network, then the weights between the input layer and hidden 

layer are given by a 4x7 weight matrix.  

 

2.5.4 Architectures of artificial neural networks 

 
The artificial neural network is normally composed of a set of matching parallel and 

distributed units, called neurons or nodes. The internal architecture of ANN provides 

dominant computational capabilities, allowing for the concurrent exploration of different 

competing hypotheses. Neural networks gather their knowledge through finding of patterns 

and relationships found in the data provided to them. There are two important architectures 

generally illustrate an ANN. These architectures are described below:    
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1. The feedforward topology 

The feedforward topology is very popular due to its association with a quite dominant and 

comparatively robust learning algorithm named the back-propagation learning algorithm. 

The MLP network and RBF network are amongst the networks functioning by means of 

the feedforward topology.  

 

2. The recurrent topology 

The recurrent networks are designed in such a way as to allow the storage of information in 

their output neurons throughout dynamic states, for providing the network with some sort 

of memories. Whereas feedforward networks maping input into output and are fixed in the 

sense that output of a given pattern of inputs is independent of the prior state of the 

network. Recurrent networks are very advantageous for modelling and recognizing 

dynamic system. Several neural networks are designed based on the recurrent topology. 

Such networks include the Hopfield network and the Elman networks.   

 

3. Activation functions 

The basic computational tool for a neural network is the neurons. These are sorts of simple 

processors which take the weighted sum of their inputs from other neurons and put on 

them to linear or nonlinear mapping termed an activation function before taking the output 

to the next neuron. The activation functions can take different arrangements such as, 

sigmoid function, step function, hyperbolic tangent function, Gaussian function and linear 

function.   

 

4. Neural network learning algorithms 

In any neural network, the most important influence is the memory stored as values of the 

weights. During consecutive iterations of the ANN, it is the understanding (past experience 

or memory) that is being gathered to update the weights and train the ANN. Based on the 

method to modernize the weights; the ANN training is classified as supervised and 

unsupervised. The learning algorithms are used to update the weight at the interconnection 

level of the neurons throughout the network training procedure. There are three common 

types of learning algorithms (Saen, 2009). These algorithms are highlighted as bellow:     
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1. Supervised learning 

It is the most common type in which a “teacher” runs information to the network to drive it 

to compete with the desired function. Suppose a set of input arrays (input data vectors) are 

applied to the network, then the output retort of the ANN is compared with the wanted 

response from “teacher”. The teacher would notify the network whether the output 

decision is correct or incorrect. As well we could define an error criterion that would then 

be a basis to update the weights of the ANN so that the network will be trained with 

consecutive input arrays (Haykin,2007).                                                          

 

2. Unsupervised learning 

The unsupervised networks also are called self-organizing networks. These networks do 

not have a “‘teacher’s” rules. The basis of unsupervised networks is clustering methods. 

They support in assemblage comparable patterns, where each cluster has patterns closer 

together. Some basic unsupervised models are Self-Organised Map (SOM) and the Vector 

Quantization ANN (VQ). The elementary idea in all of these networks is that the hidden 

layer of neurons should capture the statistical structures of the input data. The hidden 

neurons have an capability to extract the features of the data set (Haykin,2007).                                            

 

3. Reinforcement learning  

In the reinforcement learning, a direct supervisor is not available. However, a critic is 

available which encourages or discourages the network to produce a pattern (Haykin, 

2007).   

 

2.5.5 ANN types  

 
Feedforward neural networks were introduced in the 1980s but govern the literature even 

in the present day. ANNs can be applied successfully in learning, relating, classification, 

generalization, characterization and optimization (Saen, 2009). They have found thousands 

of successful applications in almost every field of science and engineering. A feedforward 

network is trained by using the well known supervised learning. The most widely used 

supervised learning algorithm is the error back-propagation algorithm. The description and 

derivation of this algorithm can be found elsewhere (Haykin, 2007). The feedforward 

architecture is layered, that is it has an input layer, one or more hidden layers and output 
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layer. The numbers of neurons in the input layer and the output layer are determined by the 

numbers of input and output parameters, respectively. The numbers of neurons in the 

output layer is equal to the number of actual outputs. However, the number of hidden layer 

neurons is found by trial and error method through extensive simulation studies. The 

activation function used in the hidden layer must be differentiable. 

 

2.5.5.1 Multi-layered perceptron (MLP) networks   

MLP is the most popular class of multilayer feedforward networks. The MLP is divided 

into three layers: the input layer, the hidden layer and the output layer, where each layer in 

this order gives the input to the next. The extra layers give the structure needed to 

recognise non-linearly separable classes. Based on the model architecture, an MLP 

network with m outputs, hn
 hidden neurons and in

 input neurons can be articulated as:  
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where, w1
ij and w2

jk represent the weights of the connection between input and hidden 

layer, and weights of the connection between hidden and output layer respectively. The b1
j 

& xi represent the thresholds in hidden neurons and inputs that are provided to the input 

layer respectively. F {•} is an activation function and is normally selected as sigmoid 

function. From equation (2.1), the values of w1
ij, w2

jk and b1
j have to be determined by 

using the error back-propagation algorithm.  

 
In general, MLP nueral network model has performed well in a number of hydrologic and 

water resources applications, such as (Maier and Dandy 2000; Tokar and Markus 2000; 

Anctil and Rat 2005; Schmid and Koskiaho 2006).  

 

2.5.5.1.1 Back-propagation algorithm 

The development of back-propagation algorithm denotes a landmark in ANNs which 

provides a computationally effective method for MLP networks training. This algorithm 

initially was introduced in 1974 by Paul Werbos and it was re-experienced by David 

Parker in 1985 and Romelhart et al. in 1986 (Unar, 1999).  
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In 1962 Rosenblatt also came close to determining the key for training perceptron when he 

anticipated a heuristic algorithm to adjust weights of the perceptron. See (Rosenblatt, 

1962) to have more detailed description of this algorithm.   

The back-propagation algorithm adjusts the weights and biases of an MLP neural network 

subsequently to minimize the sum of squared errors of the network. This is normally done 

by repeatedly adjusting the values of the network weights and biases in the direction of 

steepest descent with respect to error. This process is termed the steepest descent.   

 
2.5.5.1.2 Improved back-propagation     
To improve and upgrading as well using of the back-propagation algorithm, firstly the 

learning parameter η must be taken small to provide minimization of the total error 

indication. Though, for a small η the learning practice becomes very slow. On the other 

hand, large values of η correspond to fast learning, but lead to dependent oscillations 

which avoiding the algorithm from converging to the wanted solution. Furthermore, if the 

error function comprises of many local minima, the network might get stucked in some 

local minimum, or get stuck on a very flat topography. One of the possible ways to 

improve the standard back-propagation algorithm is to use adaptive learning rate and 

momentum. 

      

2.5.5.1.3 Back-propagation with L-M algorithm  

It has been perceived that the back-propagation is very slow in many applications even 

with adaptive learning rate and momentum. According to Hagan and Menhaj (1994) the 

training time can significantly be improved if the Levenberg-Marquardt is incorporated 

into the back-propagation algorithm.  

 
Zhou and Si (1998) reported that the LM incorporation into the back-propagation 

algorithm not only improves the training time but also provides superior performance in 

terms of training accuracy and convergence properties.  

 

2.5.5.1.4 Approximation capabilities of MLP networks          

Mathematically it has been shown that a single hidden layer feedforward neural network is 

capable to approximate any continuous multivariable function to any wanted level of 

accuracy, providing that adequately many hidden layer neurons are existing (Cybenko, 
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1989; Hornik et al. 1989; Funahashi, 1989).  The MLP neural networks typically use 

sigmodial non-linearity as their function.  

 
The above mentioned works on the approximation capabilities of MLP network are very 

encouraging. These, though, guarantee only the presence of an approximating network and 

do not give any hints about how to build one. The subject of choosing an appropriate 

number of neurons in a hidden layer of an MLP network is almost unsolved. With limited 

hidden neurons, the network may not create outputs reasonably close to the goals. This 

consequence is named underfitting. In addition an unnecessary number of hidden layer 

neurons will increase the training time. This is termed overfitting. The network will have 

so much information processing capability that it will learn insignificant aspects of the 

training set, aspects that are irrelevant to the general population. If the performance of the 

network is evaluated with the training set, it will be good. However, when the network is 

called upon to work with general population, it will perform poorly. This is because it will 

consider trivial features unique to training set members, as well as important general 

features, and then become confused. Thus it is very important to choose an appropriate 

number of hidden layer neurons for satisfactory network performance.  

 
A number of rough guidelines have been proposed to choose a suitable number of hidden 

layer neurons in a three layer MLP network. For example Lippmann, in the year 1987 has 

provided geometrical arguments and reasoning to justify why the number of neurons in the 

hidden layer of a three layer MLP network should be Q (P+1), where Q is the number of 

output units and P is the number of input units (Lippmann, 1987). A common approach is 

to start with a small number of hidden neurons e.g. with just two hidden neurons. Then 

slightly increase the number of hidden neurons, again train and test the network. Continue 

this procedure until satisfactory performance is achieved. This procedure is time 

consuming but usually results are good and successful. During this study such method was 

used to training the neural networks.  

     

2.5.5.2 Radial Basis Function neural network  (RBF-NN)             

RBF network is a type of feedforward neural network that learns by using a supervised 

training technique. Zhang A.  and Zhang L. (2004) reported that Broomhead and Lowe 

were the first researchers to exploit the use of radial basis functions in the design of neural 
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networks. One characteristic feature of RBF is that response decreases, or increases, 

monotonically with distance from a centre point (Park and Sandberg, 1991). Moreover it 

has been perceived that RBF networks are able to approximate any practical continuous 

function mapping with a satisfactory degree of accuracy (Broomhead and Lowe, 1988).  

 
The RBF network, which has three layers, can be appeared as a special class of multilayer 

feedforward networks. Each neuron in the hidden layer employs a radial basis function, 

such as Gaussian Kernel, as activation function. The output neurons implement a weighted 

sum of hidden neuron outputs. RBF network is centred at the point specified by the weight 

vector associated with the unit. Both the positions and the widths of these functions are 

learnt from training patterns. Each output unit implements a linear combination of these 

radial basis functions. Despite the topology similarity with MLP-NN, the RBF networks 

differ from MLP networks in several important points. According to Haykin (1994) these 

differences are given bellow:  

1. In most applications an RBF-NN is a single hidden layer, whereas, MLP network 

may consist of one or more hidden layers. 

2. The neurons in an output layer and in a hidden layer of MLP network share a 

common neuron model. On the other hand, the neurons in the output layer of RBF 

network are relatively different and assist altered purpose from those in the hidden 

layer.  

3. The activation function of each hidden neuron in RBF networks calculates the 

distance between the input vector and the centre of that neuron. On the other hand, 

the activation function of each neuron in a hidden layer of MLP network calculates 

the inner product of the input vector and the synaptic weight of that neuron.  

4. MLP neural network builds global approximation to nonlinear input-output 

mapping and then is capable of generalization in areas of the input space where 

little or no training data are obtainable. On the other hand RBF network build 

indigenous approximations to nonlinear input-output mappings and then are 

capable of fast learning and reduced sensitivity to the order of presentation of 

training data.  
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5. The hidden layer of MLP is nonlinear and the output layer can be linear or 

nonlinear. The hidden layer of RBF network is nonlinear and the output layer is 

always linear.   

2.5.5.2.1 Training              

The method for training radial basis function networks can be made in two stages. The first 

stage includes the determination of an proper set of RBF centres and widths. The second 

stage involves with the determination of the connection weights from the hidden layer to 

the output layer (Haykin, 1998). Certainly, the selection of RBF network centres is the 

most critical issue in designing the RBF network. These should be placed according to the 

demands of the system to be modeled (data to be predicted). A number of different 

methods have been proposed for the selection of appropriate RBF centres.  

 

2.6 ANN FOR MODELLING DESALINATION UNITS PERFORMANCE 

 

Mageshkumar et al. (2012) Artificial Neural Networks have been used for modeling 

hydrological parameters that are extremely nonlinear in both location and time-based 

levels. The input parameters selected for the model were turbidity, pH, hardness, sodium, 

calcium, chloride, potassium and sulphate. The testing of the predictive ANN model 

revealed good promise for predictions of the TDS levels between observed and predicted 

values. The coefficient of correlation during the validation process was found to be 0.951 

and the mean squared error was 0.015. 

 
Cordoba, (2011) presented a study of  using ANN approach for the evaluation and 

prediction of some drinking water quality parameters within a water distribution system. 

The performance of ANN approach was analyzed on a 4-year database of water quality and 

hydraulic parameters.  Two ANN models were constructed and one model was created 

using statistical approach multiple linear regression (MLR). From the results obtained in 

the study multilayer perceptron (MLP) models were found to be useful tools for prediction 

of free chlorine in water drinking supply.  
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Zaqoot et al. (2010) have constructed an ANN model to predict the acidity (pH) in the 

seawater along Gaza coast. They found that ANN is a promising model to predict and 

forecast pH level in the seawater. 

 
Righton (2009) developed an Artificial Neural Network model for predicting the two 

important parameters of Reverse Osmosis including: salt rejection and permeate flowrate 

(flux). The neural network model successfully predicted the two important parameters. 

Using a neural network having two hidden layers and having a series of inputs of different 

concentrations, pressure and flowrates of the complex streams both two parameters were 

predicted. The developed artificial neural network model was tested using the experimental 

data obtained from pilot plant scale RO operations set up in Sharjah and Qatar. 

 
Zaqoot et al. (2009) developed an artificial neural network for predicting dissolved oxygen 

concentrations in the Mediterranean Sea water along Gaza strip coast. The prediction 

results proved that ANN approach has good adaptability and extensive applicability for 

modelling the dissolved oxygen contents in the seawater along Gaza beach.   

 
Lee et al. (2009) developed an artificial neural network (ANN) to predict the performance 

of a seawater reverse osmosis (SWRO) desalination plant, and then applied the model to 

forecast the feed water temperature. For developing the ANN model five input parameters 

were used including: feed temperature, feed total dissolved solids (TDS), trans-membrane 

pressure (TMP), feed flowrate, and time series and two output parameters were used 

including: permeate TDS and flowrate. The trained ANN model was successively found to 

produce good promise between the observed and predicted data (TDS: R2 = 0.96; flowrate: 

R2 = 0.75) in the test data set. The results showed that the variation of the feed water 

temperature and trans-membrane pressure (TMP) was found to be significantly affect both 

the permeate TDS and flowrate.  

 
Najah et al. (2009) predicted water quality index at Johor River surface waters using ANN 

models. They developed various predictive models for total dissolved solids, electrical 

conductivity, and turbidity. The prediction results showed that the developed ANN models 

have an enormous potential for forecasting the water quality variables with total mean 

error of 10% for different water bodies.  
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Libotean et al. (2008) ANN modeling approach with back propagation (BP) and support 

vector regression (SVR) algorithms, introducing a short term memory (STM) time interval 

as an input parameter, was evaluated for describing and forecasting the time-variability of 

plant performance. An actual state of the plant (ASP) model and two types of forecasting 

models (sequential forecasting and matching forecast) for permeate flux and salt passage 

were investigated using real-time RO plant performance data. 

 
Yesilnacar et al. (2008) had predicted nitrate level in groundwater by using four parameters 

as inputs for the model including: temperature, conductivity, pH and groundwater level. 

The Levenberg Marquardt (LM) algorithm was found to be the best one within 12 back 

propagation (BP) algorithms and best neuron number was determined as 25. 

 
Diamantopoulou et al. (2005) had developed neural networks for predicting the values of 

three water quality parameters for one month ahead of the Strymon River at station located 

near the Greek-Bulgarian borders by utilizing the existing data of the monthly water 

quality as input variables. The monthly data of 13 collected parameters and the flow 

discharges at the selected stations during 1980-1990 were selected for the prediction 

purpose. The predictions result showed satisfactory of ANN models for predicting water 

quality parameters.  

 
Abbas and Al-Bastaki (2005) used ANN technology to develop a model for predicting the 

performance of a reverse osmosis unit. The artificial neural network was fed with three 

inputs including: feed pressure, temperature and salt concentration to predict the water 

permeate rate. In their work the fast L-M optimization algorithm was employed for training 

the network. The developed network learned the input-output data mapping with accuracy.   

 

Murthy and Mehul (2004) applied neural networks for prediction of RO desalination plants 

performance. The permeate flowrate and salts rejection at different conditions of the 

process were predicted using ANN based on the experimental water quality data. The 

model results were tested and compared with the observed data and the error percentage 

was calculated. The models showed that except the initial and final value of flowrates at 

low pressures the ANN model predictions values within the range of error (±1 %) except 
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for sudden deviations. Such sudden deviations are not of much important because the 

predicted and experimental values are within the satisfactory range.  

 
Al-Shayji and Liu (2002) have presented a methodology and practical guidelines for 

developing predictive models for large-scale commercial water desalination plants by (1) a 

data-based approach using neural networks based on the back-propagation algorithm and 

(2) a model-based approach using process simulation with advanced software tools 

ASPEN PLUS and SPEEDUP and compares the relative merits of the two approaches. The 

data was collected from the two largest multistage flash (MSF) and reverse osmosis (RO) 

desalination plants located in Kuwait and the kingdom of Saudi Arabia, respectively. 

Results showed that neural network and process simulation models are capable of 

accurately predicting the actual operating data from commercial MSF desalination plants, 

but the accuracy of a neural network model depends on both the proper selection of input 

variables and the broad range of data with which the network is trained.  

 

Khuan et al. (2002) back-propagation neural networks, the modular neural network and the 

radial basis function model were used to model the water quality index for water bodies in 

Malaysia. The performance of the three developed models was satisfactory. On the other 

hand, the ANN simplified and accelerated the computation of the water quality index, as 

compared with the conventional method.  

 
A1-Mutaz and A1-Sultan (1998) had described how a comprehensive mixing model can be 

used to predict Reverse Osmosis plant performance. Operating data for Manfouha 

desalination (RO) plants were used to investigate on the rationality of the values attained 

from the proposed model. Good promise was found. Whereas, the prediction values of 

productivity are 0.795 and 0.810 for Manfouha I and Manfouha II RO plants respectively. 

This showed a slightly increasing with time opposite to the field operated data that shows 

little decline of productivity with time in month for the period from 1414 to 1415 AH, with 

average values of 0.848 and 0.856 for Manfouha-I and Manfouha-II RO plants 

respectively. 
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CHAPTER 3 

METHODOLOGY AND NEURAL NETWORK APPROACH 
 

Five major desalination plants in the Gaza strip are selected for the research, to assess the 

water quality and develop ANN predictive models for the Gaza desalination plants. The 

water quality data were generated from five selected plants from southern, middle area, 

Gaza city and northern area. They are named Al-Salam desalination plant (Rafah), Al-

Sharqia plant (Khan-Younis), Al-Balad plant (Dier-Al_Balah), Hanneaf desalination plant 

(Gaza) and Al-Radwan desalination plant (Beit-Lahya) see Fig.3.1.     

 
In order to have a clear and better understanding of current status of the available 

desalination plants in the Gaza strip the data were collected from various available 

published reports, research papers and internet websites. In addition to that the selected 

desalination facilities were visited several times during the study. The selected plants are 

shown in Fig.3.1.   

 

3.1 COLLECTION OF WATER SAMPLES 

 

The water samples were collected and analyzed using the international protocols. A 500-ml 

and one liter polyethylene bottles were used for collecting samples. One liter sample was 

used for physical and chemical analysis. All samples were refrigerated at a temperature of 

1 - 4 ºC during transit to the laboratory. The water samples were analyzed immediately 

after collection.  
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Fig. 3.1: Locations map of the selected desalination plants in the Gaza Strip 

 

3.2 PROCESSING AND ANALYSIS OF WATER SAMPLES  

 

The samples of water were collected once every week for a period of six months, the 

selected parameters including: temperature, pressure, water flowrate, TDS, hardness, pH, 

chloride, electrical conductivity, calcium, magnesium and nitrate. The samples were 

collected from the feeding wells and desalination plants (product desalinated water).   

 
All analyses were carried out in the laboratories of the Palestinian Ministry of National 

Economy and Al-Azhar University. The collected water samples were analyzed according 

to the standard methods for the examination water and wastewater (APHA, 1998).  
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3.2.1 Water temperature 

Temperature is measured in the stream with a thermometer or a meter. Alcohol-filled 

thermometers are preferred over mercury-filled because they are less hazardous if broken. 

The thermometer was placed in the water at least 4 inches below the surface. Enough time 

was allowed to reach a stable temperature (at least 1 minute). Then the final reading was 

recorded in the field data sheet. The temperature is measured in degrees Celsius (° C). 

 

3.2.2 Pressure     

Pressure is the force that pushes water through pipes. Water pressure determines the flow 

of water from the tap. Water pressure gauge was used to measure the water flow pressure 

in the desalination plants. The pressure unit is bar.  

 

3.2.3 Water flowrate  

Water flowrate is one of the most important process parameters in many areas, such as the 

chemical, pharmaceutical, petroleum, energy, power engineering industries and 

desalination units. The flow meter was used to measure the water flowrate. The flowrate 

unit is m³/h.  

 

3.2.4 Electrical conductivity 

Electrical conductivity is a measure of the ability of water to pass an electrical current. 

Conductivity in water is affected by the presence of inorganic dissolved solids such as 

chloride, nitrate, sulfate, and phosphate anions (ions that carry a negative charge) or 

sodium, magnesium, calcium, iron, and aluminum cations (ions that carry a positive 

charge) (www.epa.gov, accessed on 26th March, 2013). During this work the conductivity 

meter was used to measure the conductivity. The conductivity unit which used in this study 

is (µs/cm).  

 

3.2.5 pH 

The pH is a measure of how acidic/basic water is. The range goes from 0-14, with 7 being 

neutral. The pH value of less than 7 indicates acidity, whereas a pH of greater than 7 

indicates a base. The pH is a measure of the comparative amount of free hydrogen and 

hydroxyl ions in the water (www. water.usgs.gov accessed on 26th march 2013). The pH 

meter was used to measure pH values in the field during collecting the water samples.  
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3.2.6 Total dissolved solids (TDS) 

TDS comprise inorganic salts (principally calcium, magnesium, potassium, sodium, 

bicarbonates, chlorides and sulfates…etc.) and small amounts of organic matter that are 

dissolved in water. TDS in drinking-water originate from natural sources, sewage, urban 

runoff and industrial wastewater (WHO, 2008). The TDS was measured by using the Oven 

method or conductivity meter. The general unit used for TDS concentration is mg/l.  

 

3.2.7 Total hardness (TH) 

Hardness in water is caused by dissolved calcium and, to a lesser extent, magnesium. It is 

usually expressed as the equivalent quantity of calcium carbonate (WHO, 2008). Titration 

method was used to measure the hardness during this work.  

 

3.2.8 Chloride 

Chloride in drinking-water originates from natural sources, sewage and industrial effluents, 

urban runoff containing de-icing salt and saline intrusion. Excessive chloride 

concentrations increase rates of corrosion of metals in the distribution system, depending 

on the alkalinity of the water. This can lead to increased concentrations of metals in the 

supply (WHO, 2008). Titration technique was used to measure the chloride in water. The 

common unit used for chloride is mg/l.  

 

3.2.9 Calcium 

The presence of calcium in water supplies results from passage over deposits of limestone, 

dolomite, gypsum, and gypsiferous shale. Calcium contributes to the total hardness of 

water (WHO, 2009). The titration method was used to measure the presence of calcium in 

the collected samples of drinking water.   

  

3.2.10 Magnesium 

Magnesium occurs commonly in the minerals magnesite and dolomite. Magnesium is 

important contributor to the hardness of a water, magnesium salts break down when 

heated, forming scale in boilers (WHO, 2009). The calculation method was used to 

measure the presence of magnesium in the collected samples of drinking water.  
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3.2.11 Nitrate                       

Nitrate can reach both surface water and groundwater as a consequence of agricultural 

activity (including excess application of inorganic nitrogenous fertilizers and manures), 

from wastewater disposal and from oxidation of nitrogenous waste products in human and 

animal excreta, including septic tanks. Some groundwater may also have nitrate 

contamination as a consequence of leaching from natural vegetation (WHO, 2008). UV- 

spectrophotometer method was used to calculate the nitrate concentration in water and the 

unit is mg/l.   

 

3.3 ANN MODELS DEVELOPMENT APPROACHES                                        

 
In the last few decades ANNs have become predominant for forecasting and predictions in 

a number of areas, including: medicine, finance, power generation, water resources and 

hydrology, ecological and environmental sciences as well as environmental engineering 

(Maier and Dandy, 2000; Rounds and Wood, 2001; Lee et al. 2003; Hatzikos et al. 2005; 

Muttil and Chau, 2006; Schmid and Koskiaho, 2006; El-Shafie et al. 2008; Esalmian et al. 

2008;  He, L.M and He, Z.L, 2008; and Al-Najah et al. 2009). 

  
Maier and Dandy (1999) have been reported that it is very important to adopt a systematic 

approach in the development of neural network models, taking into account a number of 

factors such as data pre-processing, the determination of adequate model inputs and 

suitable network architecture, training and model tests.  

 
In this study, for modelling purpose the feed-forward neural networks are considered and 

applied to model the water quality parameters which being performed for predictions 

purpose to test the performance of the five selected desalination plants in the Gaza strip.  

 
This research work presented two types of techniques according to the different training 

algorithms. They are multi-layer perceptron (MLP) and Radial Basis Function Network 

(RBFN), both were trained on the obtained data to develop a method to predict the 

desalinated drinking water parameters . 
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Both of two neural networks belong to the feed-forward neural networks where there is no 

feedback connection between layers and no connections between units in the same layer. 

Moreover, both work in a supervised manner, are very good in classification and solving 

problems, easy to use, work as universal approximations, have very good nonlinearity 

capabilities and are widely used in the feedforward network family. 

 
In this study for the training of MLP to predict water quality parameters the performance 

of the back-propagation algorithm has been enhanced by incorporating the Levenberg-

Marquadrt (LM) algorithm into it. The LM algorithm which used in this work is a gradient 

based, deterministic local optimization algorithm. When it is employed to train the MLP 

model, the advantage of the Levenberg-Marquardt over the traditional back-propagation 

algorithm is that it can provide a faster (second-order) convergence rate and holds relative 

stability (Quilty, et al. 2004). Similar to the quasi-Newton methods, Levenberg-Marquardt 

algorithm was designed to approach second order training speed without having to 

calculate the Hessian matrix. The LM incorporation into the back-propagation algorithm 

not only improves the training time but also provides superior performance in terms of 

training accuracy and convergence properties.   

 

In the other hand the Orthogonal Least Squares (OLS) algorithm is used for RBF network 

which was developed by (Chen et al. 1991).  

 

The steps which are followed during the development of ANN models for predicting  the 

performance of the selected desalination plants in the Gaza strip during this study are 

outlined below:  

 

3.3.1 Data collection                                                      

As mentioned earlier, the water quality data are generated from the five selected 

desalination plants from the Gaza strip for a period of six months for the development of 

desalinated water quality models. The all generated data (120 reading) during this study  

are combined in one set to examine the posibility for developing various neural network 

models for predicting the water quality parameters including: TDS, chloride, permeate 

flowrate (flux) , nitrate and magnisum concentrations. 
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3.3.2 Data divisions  

It is a common process to divide the obtainable data into two sub-sets; training and testing 

set. Neural networks may be incapable to generalize beyond the range of the used data for 

training resolution (Minns and Hall, 1996). It is imperative that the training and testing sets 

having the same population. In case the obtainable data are limited it might be very 

difficult to bring together a representative testing set.  

 
Holdout method is one of the most practiced methods that maximize utilization of the 

obtainable data (Masters, 1993). The clue of this method is to standby a small subset of the 

data for testing and training the network with the remaining data. When generalization of 

the trained network is obtained with the help of testing set, a different subset of the data is 

used and the above process repeated. Maier (1995) and Maier and Dandy (1998a) 

recommended using a subset of the data as a testing set in an experimental phase to 

determine how long training should be carried out so that satisfactory generalization ability 

is attained. The subset used for testing is then added to the remaining training data, and the 

entire data set is used to train the network for a fixed number of epochs, based on the 

results from the experimental phase. In this study, about 70% of the obtainable data used 

for training and the remaining data used for validation and testing of the developed  

models.   

    

3.3.3 Choice of performance criteria 

It is significant to define the performance criteria for judging the model before 

development taking place. The performance criteria can have momentous influence on the 

model architecture and weight optimization procedures that already been selected. In most 

neural networks applications the performance criteria include one or more of the following: 

prediction accuracy, training speed and the time delay between the presentation of inputs 

and the response of outputs for the trained network. During the present work prediction 

accuracy was used as performance criteria in the process of ANN models development. A 

number of trials for the prediction accuracy have been recommended in the literature 

(Masters 1993; Lachtermacher and Fuller 1994; Maier and Dandy 1996b; Shukla et al. 

1996; Xiao and Chandrasekar, 1997).  
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3.3.4 Data processing 

At early stage of the water quality parameters prediction, inlet and outlet water quality data 

of selected desalination plants in the Gaza strip, over a period of six months beginning 

from March to September (2013) was generated. A total of five sampling locations in the 

Gaza strip are selected. The main obtainable selected water quality parameters including: 

water temperature, pressure, flowrate, turbidity, pH, EC, TDS, chloride, hardness, nitrate, 

calcium and magnisum. Because the input and output variables have very different orders 

of magnitude it is endorsed to rescale the data.  In this way, more reliable predictions can 

be made. The normalisation of data is usually done with {0, 1} (Saen, 2009). Though, 

during this work the variables are rescaled to be included within the interval {0,1} which 

could cover all variations of the data sets used for the development of ANN prediction 

models.   

 

3.3.5 Training 

The goal of training stage is to obtain an accurate ANN model. In training stage, the 

selection of the transfer function, learning rate, momentum, exit condition setting, Mean 

Square Error (MSE) and verification of the model are needed. Network training can be 

conducted by using local or global methods. Local methods comprise of two categories: 

first-order and second-order methods. First-order methods are based on a linear model 

(gradient descent) while second-order methods are based on a quadratic model such as 

Newton’s method (Battiti, 1992). In both cases, iterative approach is used to minimize the 

error function. The weight update equation formula is revealed by (Parisi et al. 1996): 

 

                                   ���� = 	�� +	��	�                                                                      (3.1) 

 

Where wn is the vector of connection weights, γn is the step size, dn is a vector outlining the 

direction of descent and the subscript n represents the iteration number. The important 

difference between the various algorithms is the choice of dn, which determines the 

convergence rate and computational difficulty. The global methods have capability to 

escape local minima in the error surface and also capable in finding optimal or near 

optimal weight arrangements. In the stochastic gradient algorithms, the error function does 

help the network to escape local minima in the error surface (Heskes and Kappen, 1993). 
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During the training developments, these helpful factors are gradually detached (Hassoun, 

1995).  

 
In this thesis, training, validation and testing of ANN models for the water quality 

parameters prediction were carried out using neural network toolbox in the MATLAB. The 

MLP network is trained by using the back-propagation incorporated with Levenberg-

Marquardt algorithm. The tangent hyperbolic function is used as activation function in the 

hidden layer neurons. The linear activation function is used in the output layer neurons. 

The RBF network is trained by using the back-propagation incorporated with the 

Orthogonal Least Squares algorithm and the Gaussian radial basis function is used as 

activation function in the hidden layer. The linear activation function is used in the output 

layer.    

 

3.3.6 Validation  

The residual entropy of the trained network is a measure of its generalization. When the 

residual entropy increases, the performance of the generalization decreases, meaning that 

the model still needs modification. The residual entropy is monitored during training by 

means of MSE. It is the squared error between the output response of network and the 

training target. A network is said to be generalized well when the output is correct or close 

enough for an input. Then the model is ready for practice and use.  

 

3.3.7 Testing 

When the network training is completed, the trained network performance has to be tested 

by using unknown data set and the criteria recommended in (section 3.4.3). It is imperative 

that the testing data set should not have been used as a part during data sets training 

method. After testing the model with unknown data set and in case that there is a big 

difference in the error obtained when the tested set is used in comparison with the trained 

data set, it is likely that the two data sets are not representative of the same population or 

that the model is over fitted (Masters, 1993). Deprived testing can be owed to the network 

design, insufficient data preprocessing and rescaling of training and testing data sets. In 

this work the developmed network (models) performance is tested with different unknown 

data sets.   
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3.3.8 Developed ANN models procedure 

The description and details of neural networks approach can be found elsewhere (Lek et al. 

1996b), (Olden and Jackson, 2001) and (Haykin, 2007). Mostly, predictive models can be 

divided into statistical and physical based approaches. Statistical approaches determine 

relationships between historical data sets, whereas physically based approaches model the 

underlying processes directly. Multilayer perceptron neural network is closely related to 

statistical models (Rumelhart et al. 1986) and is the most appropriate type of ANN for 

prediction. When using ANNs for forecasting, the modeling idea employed is the same as 

the one used in traditional statistical approaches. In both cases the unknown model 

parameters (i.e., the connection weights in the case of ANNs) are adjusted in order to 

achieve the best match between a historical set of model inputs and wanted outputs.  

 
According to kasabov (1996) the neural network generally consists of at least three or more 

layers, which comprise an input layer, an output layer and a number of hidden layers. Each 

neuron in one layer is connected to the neurons in the next layer, whereas there are no 

connections between the units of the same layer.  

 
This work representing the application of ANNs to evaluate performance of the 

desalination plants in the Gaza strip through predicting some selected water quality 

parameters, having the dynamic and complex processes hidden in the obtained data itself. 

Addationally, the objective of this work is to investigate whether it is possible to predict 

one week ahead values of the water quality parameters measured during the monitoring 

activity at selected desalination plants in the Gaza strip.  

 
Two types of feedforward networks are used to develop the ANN predictive models. They 

are MLP and RBF neural networks; both are trained on the generated data for developing 

predictive models for the water quality parameters predictions. The chosen MLP network was 

trained using the back-propagation incorporated with LM algorithm. The RBF network was trained 

using Orthogonal Least Squares algorithm. Before running the all models data sets were 

normalized to be included within the interval [0, 1]. The approach used to train and testing the 

ANNs models is briefly discussed as below: 
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Table 3.1: Methodology of the developed MLP and RBF NN models 

Predictive Models Models Structure Explanation 

Permeate flowrate MLP [3-6-1] 

RBF [3-87-1] 

Three neurons in the input 

layer and one neuron in the 

output layer used for both 

MLP and RBF networks. 

Six neurons are optimized in 

the hidden layer for MLP and 

87 for RBF networks. 

Two ANN predictive models are 

developed including: MLP and RBF. 

The selected input variables for both 

networks are feed pressure, feed pH and 

feed conductivity. The data divided into 

two data sets: 87 readings used to train 

the network and 33 readings used for 

testing the network performance.  

TDS MLP [4-6-1] 

RBF [4-87-1] 

Four neurons in the input 

layer and one neuron in the 

output layer used for both 

MLP and RBF networks.  

Six neurons in the hidden 

layer are optimized for MLP 

and 87 for RBF networks.  

Two ANN predictive models are 

developed including: MLP and RBF. 

The selected input variables for both 

networks are pressure, temperature, pH 

and conductivity. The data divided into 

two data sets: 87 readings used to train 

the network and 33 readings used for 

testing the network performance.  

 

Chloride MLP [4-7-1] 

RBF [4-87-1] 

Four neurons in the input 

layer and one neuron in the 

output layer used for both 

MLP and RBF networks. 

Seven neurons in the hidden 

layer are optimized for 

training MLP and 87 for 

RBF networks. 

Two ANN predictive models are 

developed including: MLP and RBF. 

The selected input variables for both 

networks are pressure, temperature, pH 

and conductivity. The data divided into 

two data sets: 87 readings used to train 

the network and 33 readings used for 

testing the network performance. 

Nitrate MLP [4-7-1] 

RBF [4-87-1] 

Four neurons in the input 

Two ANN predictive models are 

developed including: MLP and RBF. 

The selected input variables for both 
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layer and one neuron in the 

output layer used for both 

MLP and RBF networks.  

Seven neurons in the hidden 

layer are optimized for MLP 

and 87 for RBF networks.  

networks are pressure, temperature, pH 

and EC. The data divided into two data 

sets: 87 reading used to train the 

network and 33 readings used for 

testing the network performance.  

 

Magnesium MLP [3-6-1] 

RBF [3-90-1] 

Three neurons in the input 

layer and one neuron in the 

output layer used for both 

MLP and RBF networks.  

Six  neurons are optimized in  

the hidden layer for MLP 

network training and 90 

neurons for RBF networks.    

Two ANN predictive models are 

developed including: MLP and RBF. 

The selected input variables for both 

networks are pressure, EC and chloride. 

The data divided into two data sets: 90 

reading used to train the network and 30 

reading used for testing the network 

performance. The selected data for 

training MLP and RBF networks was 

the readings of first 3 weeks while the 

fourth week readings was chosen for the 

developed model testing.  

 

 

3.4   STATISTICAL ANALYSIS TOOLS 

 
The water quality data is generated and being used to develop ANN predictive models to 

predict the water quality for assessing desalination plants performance in the Gaza strip. 

The generated data were entered as Microsoft Excel sheets, uploaded to Statistical Pakage 

for Social (SPSS) and to Minitab software, and analyzed using Min, Max, mean, standard 

deviation tools. In addition the Pearson correlation coefficient (a measure of linear 

association) and paired sample t-test are used to detect significant variations among 

parameters in different facilities. The training and testing of the developed ANN models 

were carried out using neural network toolbox in the MATLAB. Two types of feedforward 

networks are used. They are Multilayer Perceptron (MLP) and Radial Basis Function 

(RBF) neural networks.  
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CHAPTER 4 

STATUS OF DESALINATION PLANTS  

IN THE GAZA STRIP  

 

4.1 EXISTING DESALINATION PLANTS  

   

The most major operated desalination plants in the Gaza strip are given in Table 4.1. The 

Palestinian Water Authority (PWA) built some other plants in cooperation with a number 

of different municipalities in addition to a large number of small private desalination units. 

Fig. 4.1 shows a map of desalination facilities in the Gaza strip. 

 

 

Fig.4.1: Locations map of the RO desalination plants in the Gaza Strip 
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The municipality of Dier-Al_Balah is operating the plant with a maximum capacity of 

about 1,872m3/d. This Reverse Osmosis (RO) facility utilize brackish groundwater as 

feeding to produce about 1,080 m3/d desalinated water along-with recovery rate of 75% 

(Baalousha, 2006). There are two large-scale RO desalination facilities placed in Khan-

Younis city named Al-Sharqia, which was built in 1997 and Al-Saada which was built in 

1998. Both plants are owned and functioned by the PWA and the municipality of Khan-

Younis. The capacity of Al-Sharqia plant is about 1,200m3/d and the capacity of Al-Saada 

plant is around 1,560m3/d (El Sheikh, 2004). In 1998 RO desalination plant was 

constructed at the Gaza industrial zone. It was using brackish groundwater as an influent 

and had a capacity of 1,080m3/d. It was planned that the produced desalinated water will 

be used for industrial purposes in the zone and partly for municipal use in the surrounding 

localities. Though, due to the difficult and hard political situation in the region work in this 

unit was disqualified (Metcalf and eddy, 2000). 

  
Table 4.1: Large scale brackish water desalination plants in the Gaza Strip 

Plant name Location & construction date 
Capacity 

(m
3
/h) 

Productivity 

(m
3
/day) 

Recovery 

rate % 

Al-Balad Dier-Al_Balah (1991) 60 420 75 

Al-Sharqia Khan-Younis (1997) 55 440 70 

Al-Saada Khan-Younis (1998) 80 640 70 

Al-Bureij Al-Bureij (2009) 60 480 83 

Al-Nuwairy Bani-Suhaila–Khan-Younis (2010) 50 400 75 

Al-Salam Rafah (2010) 60 480 80 

Seawater Dier-Al_Balah (2001) 30 200 80 

Source: Personal communication, 2013  

 
There are also two facilities that utilize seawater as influent. One is located in the northern 

part of Gaza strip near the beach and uses salt water from seashore well as feed water. The 

capacity of this facility was planned to be about 1,200m3/d in the first stage and 5,000m3/d 

in the final stage. This plant is not yet completed because of the fluctuation in the political 

situation. The second RO desalination plant is located in the middle area of the Gaza strip 

with a capacity of 600m3/d in the first stage, and 1,200m3/d in the second stage.  The 

feeding water for this plant is salt water from wells drilled near the seashore. The second 

plant has been operated while the northern one is not in operation yet. There is a proposal 

for a regional desalination plant for the Gaza strip with a capacity of 60,000m3/d in the first 
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phase and 150,000m3/d in the second phase (El Sheikh, et al. 2003 and El Sheiks, 2004). 

This plant will come across partially with the increasing demand of water supply in the 

region for various purposes. Seawater is planned to be used as a feed for this facility. In 

addition to the desalination plants in Table 4.1, there are many other small-scale units 

owned and operated by the private sector some of them under the control of the PWA and 

the Ministry of Health. All these units use RO technology to produce desalinated water 

from brackish groundwater and then treated water is sold to the community. Today, there 

are about 118 private desalination units owned and operated by private investors, almost 30 

units are licensed by PWA (personal communication, 2013). According to Baalousha 

(2006) the capacity of private desalination facilities varies between 20 to 150 m3/d and 

brine water rejection ranges from 30m3/day to 240 m3/day depending on the inlet quality. 

These private plants produce a total of about 2000 m3/d of desalinated water. 

 

4.2 WATER QUALITY 

 

The PWA was reported that about 60% of the total amount of groundwater in the Gaza 

strip coastal aquifer is of poor quality and unfit for drinking purpose as compared with 

WHO standards (PWA, 2000). As water pumping rises, the aquifer becomes more brackish 

and deteriorated, and brine water intrudes the aquifer. 

 
The level of chloride, for example, has lately reached more than 1,000 mg/l at several sites 

because of over-pumping. High chloride level has been observed in the Gaza city and 

southern area. In Khan-Younis governorate, seawater intrusion has been observed which 

cause rise in the level of chloride (Yakirevich et al. 1998). 

 
Nitrate concentration (NO3

-) has also been noticed at a high level, up to 400 mg/l, 

particularly in Khan-Younis governorate underground water wells. It is understood that the 

leached wastewater from septic tanks is accountable for this high level of nitrate. In the 

northern part of Gaza strip (Bait-Lahyia) where the wastewater treatment plant used to be 

overloaded and wastewater had been flooded in a wide region around, a high level of 

nitrate up to 500 mg/l had been observed (Baalousha, 2006). 
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4.3 WATER BALANCE AND ESTIMATED DEMAND 

 

Precipitation is the most important source of groundwater recharge, as well as some other 

secondary components that contribute to groundwater recharge. There are some of non-

fresh water sources that contributed to the aquifers feeding. These sources include: leakage 

of water and sewer systems, irrigation runoff, adjacent inflow to the aquifer, and seawater 

intrusion.  

 
Water supply in the Gaza strip is almost totally based on groundwater abstraction. A small 

quantity about 4.7 MCM/y is imported from Israel and inconsequential quantities are 

currently produced by seven small desalination plants including: six brackish and one 

seawater plant. Table 4.2 presents the water balance for the Gaza Strip in the year of 2010 

(PWA, 2012).  

 

Table 4.2: Water balance in the Gaza Strip for 2010 

Water balance MCM/y 

Groundwater abstraction for domestic supply  90 
Groundwater abstraction for irrigation 80 
Total groundwater abstraction 170 
Sustainable yield of the aquifer, based on natural recharge -55 
Water deficit, resulting in 3.1 times overexploitation abstraction of the 
aquifer  

115 

Source: PWA, 2012 

 

According to the PWA reports, the average yearly precipitation in the Gaza strip extents to 

about 320 mm based on a 20-year average data from (1980 to 1999). Several studies have 

been conducted to approximate the net groundwater recharge from precipitation 

(Baalousha, 2006). Based on these studies, it was noticed that the average annual net 

groundwater recharge from precipitation is about 43.29 million m3 (Baalousha, 2004). 

 
The overexploitation of the groundwater aquifer for a period of several decades has led to 

the lowering of the groundwater level which in turn has resulted in seawater intrusion from 

the Mediterranean Sea and to the rise (up-coning) of highly saline deep groundwater into 

the production wells. Another issue is the groundwater pollution by nitrates, primarily from 

untreated domestic wastewater discharges, and agricultural activities (PWA, 2012).   
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Table 4.3 presents the predictable water demand for the period from 2012 to 2035 which 

was prepared by (TECC, a local consultant) for the Palestinian Water Authority (PWA, 

2012). It was reported by Baalousha (2006) that the annual shortfall in water resources 

raises annually additionally to the continuous deterioration of the coastal aquifer as a result 

of seawater intrusion and wastewater discharges. Annual water supply is projected to be 

increased due to the continual desalination projects, in addition to artificial recharge. The 

annual safe yield of the coastal aquifer is not more than 60 million m3. Therefore, the 

available water in the aquifer covers only part of the demand, whereas the rest ought to be 

secured by other resources. According to the PWA (2000) strategy, the shortage in water 

may be reduced through the desalination of brackish water and seawater and wastewater 

reuse. 

 

Table 4.3: Water demand forecast 

year 2012 2015 2020 2025 2035 

Population (million) 1.64 1.82 2.15 2.57 3.63 
Per-capita production (l/c,d) 152 144 151 150 150 
Domestic demand (MCM/y 91.10 95.34 118.48 140.72 198.50 
Irrigation (MCM/y) 70 65 60 60 60 
Total demand (MCM/y) 156 160 178 201 259 

Source: PWA, 2012 

The domestic water demand is estimated to be increased from currently 91 MCM to 118 

MCM in 2020 and added to 199 MCM in 2035. The area of irrigable land is projected to be 

decreased due to the fast growing population and the existing limited land in the Gaza 

strip. The future use of more effectual irrigation techniques is expected to decrease the 

irrigation quantity of water from 70 to 60 MCM/y in the coming years. An irrigation water 

demand study done in 2011 by the Utah State University endorsed that utilizing more 

efficient irrigation techniques may reduce the current irrigation demand to 65 MCM/y 

(PWA, 2012). 

 

4.4 UNCONVENTIONAL WATER RESOURCES  

 

Understanding the critical water status in the Gaza strip in quality and quantity, finding out 

new sources of water supply is a necessity. Whichever new water source can ease the stress 

on the aquifer and help in the improvement of water quality. 
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Artificial recharge can increase the freshwater quantity of the aquifer when it is 

implemented. The PWA has implemented few projects for artificial recharge in Gaza. 

However, this choice is still under investigation and it can be a good alternative to 

overcome the water shortage problem and improve the water quality if it is implemented in 

large-scale projects (PWA, 2000). Meanwhile the agricultural activities consume about 

60% of the total water demand; using treated wastewater for irrigation purpose can reduce 

depletion of groundwater importantly. Presently, the effluent of wastewater has not been 

utilized for agricultural purposes due to different reasons. Although Israel has been using 

treated wastewater for irrigation since long time, the PWA has recently planned to use 

recycled wastewater for irrigation (Metcalf & Eddy, 2000).    

 
Desalination of seawater and brackish groundwater is the only alternative source of water 

supply. The first brackish water desalination plant was established by Israelis in 1991 and 

has been used in Gaza (Dier-Al_Balah) for municipal water supply. Many desalination 

plants have been set up and operated since then (Mogheir et al., 2013). 

 

4.5 IMPACTS OF DESALINATION PLANTS  

 

Desalination plants can have an indirect impact on the environment because of many plants 

receive energy from the local grid instead of producing their own. The potential 

contamination of groundwater aquifers in the proximity of desalination plants can be an 

environmental concern. There is a risk of polluting the groundwater from the drilling 

process when installing feed-water pumps. Leakage from pipes that carry feed-water into 

the desalination plant and highly concentrated brine out of the plant may percolate 

underground and cause damage to groundwater aquifers. The most important 

environmental aspects with respect to desalination plants in the Gaza strip are highlighted 

as below:    

 

4.5.1 Energy utilization 

Energy cost in desalination plants is about 30% to 50% of the total cost of the produced 

water based on the type of energy used. Fossil energy is the best type of energy for 

desalination from an economic point of view. To increase the efficiency of the desalination 
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plant, it needs to be operated most of the day hours. Unfortunately, most of the RO plants 

in the Gaza strip are operating for about 8 hours per day, and thus the energy consumption 

is not optimal. Mixing different types of energy as heat and electricity can reduce the total 

cost of desalination. This method of mixing is termed a hybrid process, was reported by 

(Baalousha, 2006 and Al-Borsh, 2013). Hybrid desalination plants use both RO and 

distillation technologies for reducing energy requirements. The distillation unit draws 

waste steam from a thermal power station and utilizes the energy in the steam to heat 

seawater which is then distilled. The RO unit utilizes electricity from the power station and 

operates during periods of reduced power demand. Therefore mixing both systems leads to 

optimization of the total efficiency of the whole operation. Thus, the total cost of 

desalination can be reduced a lot through reducing the energy consumption which is about 

50% of the total desalination cost.  

Israel has provided energy for the Gaza strip since 1967. Additionally, a power plant was 

established in the Gaza strip comprising six turbines, with a total production capacity of 

136 MW (when fully operated). In 2003, the first stage of this station was completed with a 

power output of 30 kWh which is about 40% of the Gaza strip needs. However, the cost of 

power produced locally in the Gaza plant is estimated at 0.125 $ per kWh. This is almost 

double the price of the electricity purchased from the Israeli grid. That means, if the 

desalination plants are fully based on the Gaza power plant, the cost of the desalination 

process is uncertain. Currently the power station does not operate with full capacity. This is 

due to the fuel shortage as a result of the critical situation in the Gaza strip arose since the 

last 14 years. On the other hand, if the desalination plants are dependent on Israel that 

would be a risky alternative since if Israel stops providing fuel and energy, these 

desalination plants could not operate. 

4.5.2 Land precondition 

Since the area of Gaza strip is very small, and the population density is very high as 

compared with other countries in the world, the land cost is high. Therefore, the land 

problem should be reviewed and assessed well if the desalination unit to be implemented 

near the beach or away from it. On one hand, locating the desalination unit near the beach 

is a good option as no transport of saline water or brine effluent is needed. On the other 



Chapter -4 Status of Desalination Plants in the Gaza Strip  

 

43 

  

hand, constructing the desalination unit near the beach, which usually used for recreation 

purpose, is not a good option. Implementation of a desalination unit away from the 

seashore needs a pipeline to transport the feed seawater to the unit which means using 

pumps with more energy obligations. Moreover, construction of a pipeline to the sea will 

be needed to transport brine effluent into the sea. This definitely, increases the costs and 

implies the risk of pollution as a result of possible leakage. For a large desalination unit 

with a capacity of 150,000m3/d, a considerable land area will be required. Large pumps 

required for RO, water pools, tanks, pipelines, and other facilities occupying a significant 

area. This may be as an important aspect in the case of the Gaza strip and should be 

considered. Hence, observant investigations should be conducted to reduce the impact of 

unit location (Baalousha, 2006). 

 

4.5.3 Environmental aspects 

 

The use of RO desalination facilities has the potential to negatively impact the 

environment. Effects on the environment can be caused by the discharge of chemicals used 

in the desalination process. Membranes used in the RO process have a short life and the 

cost of replacing these membranes can be accounted for nearly half the cost of desalination 

of seawater. The following sections discuss the impact of desalination plants in the Gaza 

strip on the environment. 

 
4.5.3.1 Continuation impact 

The maintenance of RO desalination plants is very important and essential duty. The 

pretreatment filters must be washed before processing the filtered seawater every few days 

to avoid clogging and maintain efficiency. This washing process produces chemical 

sludge. Sludge must be disposed suitably with either saline solution or by means of 

transport to the landfill. In addition, cleaning of the membrane, which must be done every 

3 to 6 months, produces harmful components. In the cleaning process diluted acid or 

alkaline aqueous solution usually is used. Occasionally, sodium bisulphate is used to 

maintain chemical solution before any action. Such chemicals should be treated to free the 

membrane from toxicity. In addition to the environmental impact, there are some another 

problems. The maintenance needs trained and skilled people to do this job, and there is a 



Chapter -4 Status of Desalination Plants in the Gaza Strip  

 

44 

  

doubt about such experienced people in the Gaza strip. Lacks in such experts may lead to 

rapid damage to the membranes and, therefore, increases the cost of desalination. 

 

4.5.3.2 Groundwater pollution 

Characteristics of saltwater discharged from the desalination facilities being dependent on 

the desalination method, the quality of feed water, permeate water, the pre-treatment, 

cleaning and the RO membrane storage methods used (Aish, 2010). Though, all the 

desalination facilities use chlorine, which is harmful on the environment, for cleaning the 

pipes in the treatment process. In general, the salt concentration of the discharged brine is 

nearly double than the seawater salts (seawater has about 35,000 ppm of salt concentration, 

whereas brine has 46,000 to 80,000 ppm) (Baalousha, 2006). 

 
In the Gaza strip desalination units, RO is the most extensively technology used. And 

accordingly, the effluents from these units contain amounts of chemicals such as anti-

scaling, ferric chloride, surfactants and acids, which may affect the environment if the 

process did not follow the appropriate mitigation (dilution process). Effluents from 

brackish water desalination units, which are also used in the Gaza strip, have properties 

quite different from that of groundwater. It has more calcium and magnesium in addition to 

some other components. 

 
In the Gaza strip, the liquid waste of these units is not properly discharged. In all cases, the 

waste is dumped into the surrounding field, and therefore, it may lead to contamination of 

groundwater and leachate deposits may degrade productivity of the soil. This issue can be 

solved by using evaporation ponds for separating the water from the salt. Though, it is not 

efficient to do so in the Gaza strip due to the unavailability of land. Since desalination units 

are small and distributed in the whole area of Gaza, the existence of the economical 

solution would be transport of liquid wastes to the sea using tanks. This practice is not 

favored from an environmental point of view, since there may be a leak from the tanks. 

Another alternative could be by connecting the desalination discharge to the pipeline, 

which ends in the post- treatment unit on the beach before disposal of the brine (Baalousha, 

2006). 
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In general, disposal of brine water in sewers or in wadi Gaza or to the sea by direct or 

indirect methods considered an important environmental issue besides the dealing with the 

impact of its disposal. There is very limited option to deal with brine water on site or to 

discharge into the sea or open areas (Aish, 2010). 

 
In the lack of stabilization in the Gaza strip, there are no guidelines and rules for 

desalinated water thus there is no control of the desalinated water quality and the 

environmental effects of desalination facilities. As a result, the proprietors of commercial 

desalination facilities do not monitor the product water quality or environmental pollution 

level. There is also no public awareness of the produced water of poor quality by these 

commercial units. In this way, the PWA, which is the controlling authority, finds it 

enormously difficult to control the product water from desalination facilities and the 

environmental pollution level. Hence, the PWA should implement intensive monitoring 

program of these facilities and should not issue any permit for them without bearing in 

mind environmental impacts. Public awareness can be very supportive in this concern to 

demonstrate the thinkable pollution of the desalination product water. In addition to the 

commercial desalination facilities, using of small RO units at home is common practice in 

the Gaza strip. The product water from these units is mostly not controlled or tested. In the 

nonexistence of public awareness, people are using these RO units for long period without 

changing the membrane. As a result, the consumed water from the home units is somewhat 

unhealthy and might cause unlike diseases due to microbes and virus growths (Baalousha, 

2006). 

 

4.5.3.3 Effects on marine environment 

The major impact of desalination plants on the surrounding environment is often reflected 

on marine life. The brine water discharged has the ability to alter the seawater salinity, 

temperature and the alkalinity and can cause alteration of marine habitats. Effluents from 

the desalination facility may also have severely affects on the marine environment and to 

damage the marine life in the region. However, the brine comprises of materials that 

originated in the sea, and its higher specific weight and possibly harmful chemicals may 

harm the marine environment around the discharge point. In general, the characteristics 
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and the constituents of discharge brine water from desalination facilities which might 

contain all or some of the following constituents: 

� High salt concentration. This may destroy organisms in the area of outfall. Besides, 

since brine might sink down due to its high density, this may cause severe damage 

of the marine environment underneath by preclusion of mixing and reducing 

oxygen level. The suitable solution would be by treatment of the brine and mixing 

with other seawater prior discharging into the sea. 

� Brine has a temperature and turbidity higher than the seawater. Fish species are 

commonly very sensitive to any change in temperature. Therefore, this difference 

in temperature between the discharge and seawater may affect the flow pattern of 

migration of fish along the coast. 

� Brine comprises of some chemicals such as biocide treatment, sulfur dioxide, 

coagulants, polymers, and in some cases may be combined with the waste flow 

comprising of chemicals from the treatment, flushing, cleaning, etc. 

� High total alkalinity as a result of increasing the calcium carbonate, calcium sulfate 

and other elements in the seawater to nearly doubled.   

� Toxic metals, which might be produced if the discharge brine has connection with 

metallic materials used in the plant units. 

 
Appropriate brines dilution should be made far away from the seashore and the water 

quality in the area have to be monitored from time to time. In addition to the serious effects 

of desalination facilities brine discharge, intake has also effects on the surrounding coastal 

and marine environment. This intake may have different effects on marine species because 

of collision. These processes may arise when the species hit the intake or when these 

species are taken to the facility and destroyed throughout the desalination practice. 

Exceptional care must be taken to avoid or to decrease such effect to the lowermost 

possible extent (Baalousha, 2006 and Danoun, 2007). Table 4.4 shows the results of one 

sample of saline water (brine) was collected and analyzed for water quality parameters 

during the period of this study. 
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Table 4.4: Characteristics of discharged brine from desalination plants in Gaza Strip 
 

Parameters Values Parameters Values 

pH 7.90 Turbidity 0.58NTU 

Temp. 25.1(°C) TDS 16331.34(mg/l) 

Nitrate 382.25(mg/l) Conductivity 21700(µs/cm) 

Hardness 1710.72(mg/l) Calcium  266.644(mg/l) 

Chloride  6789.384(mg/l) Magnesium  253.424(mg/l) 
 

Note: Date of sample collection: 1/4/2013 (Al-Salam Plant).  

 

4.5.3.4 Brackish water and seawater intrusion  

Fresh water in the coastal aquifer of Gaza strip subsists in the form of lenses, which is 

located on more dense salt water. These lenses are recharged by way of rainwater 

infiltration and other secondary sources such as leakage from water network and sewer 

systems.  

 
Over-pumping of freshwater causes up-coning of brackish and salt water underneath. Even 

though the desalination schemes using brackish water underneath the fresh lenses as 

intake, this may has an adverse effects on the environment. Extraction of brackish 

groundwater may add to imbalance in the groundwater scheme, which is by now very 

breakable. Continuous pumping of these dense layers of brackish groundwater might lead 

to lowering of water table above. The water table and transition zone between fresh and 

brackish/saline water is changeable by the time. This change causes drop in the water table 

level and consequently, may lead to considerable land subsiding with consequential 

destruction to structures, drainage and irrigation. In addition, several numbers of wells in 

the area are shallow, and they may become dry due to the lowering of groundwater table.  

 
The agricultural activities may also be adversely affected since the root zone may be turned 

dry. In coastal aquifers, similar to the case of Gaza strip aquifer, there is a saline boundary 

between the fresh groundwater and the seawater. The length of that boundary is highly 

dependent on the inflow and outflow of groundwater. In normal situations, the length of 

the boundary is around tens to hundreds of meters. Withdrawal of groundwater may cause 

an internal alteration of this boundary, subsequently affecting the freshwater and saltwater 

balance. This balance is observably alarmed in the Gaza strip coastal aquifer. Given the 
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high pumping rate, there is a strong evidence of seawater intrusion (Yakirevich et al. 

1998).  

 
From desalination viewpoint, any groundwater discharge irrespective to its quality, may 

lead to disruption of the balance. If the locations of shore wells which have been drilled for 

desalination purposes are not properly selected, they would severely affect the groundwater 

aquifer. It is recommended that beach wells to be located in the saline water zone behind 

the boundary to avoid any extension of the boundary inland. Alongside with its 

hydrogeological influence, beach wells have some other disadvantages. There is an 

immense doubt about the chance of water outflow in large amounts by the use of beach 

wells. Such wells may be not able to supply high amount of seawater due to many 

hydrogeological reasons. Moreover, clogging can take place in such wells. Thus, it must be 

carefully monitored if beach wells will be used as a seawater feeding source (Baalousha, 

2006). 

 

 4.5.3.5 Quality of desalinated water 

The quality of desalinated water differs on the basis of a desalination method. According to 

the World Health Organization (WHO) standards, potable water may have different 

minerals up to a certain extent. In commercial water desalination facilities in the Gaza 

strip, and in the lack of quality control, the desalinated water has very small amounts of 

almost minerals. It was reported that water produced from these plants have less than 20 

mg/l calcium, 10 mg/l of magnesium and 100 mg/l hardness and 0 fluorides (Einav, et al. 

2002). During this study the water produced from the selected desalination plants have less 

than 17 mg/l calcium, 6 mg/l and 70 mg/l hardness. Thus, the produced water contains very 

small amount of elements that are necessary for human being health.  

 

4.6 Concluding remarks 

 
Evidently, the desalination of seawater and brackish water is a necessity in Gaza strip. 

Utilizing desalination as a source of water supply has various benefits. It gives the 

impression that RO is the best choice in terms of produced water quality or the cost of 

treatment when it is compared with other technologies. On the other hand, the impact of 

these facilities is not well monitored. 
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Desalination has different aspects, including environmental, social, and economic effects. 

From the point of view, the environmental issue can be precisely studied before 

implementing the desalination projects, otherwise, In the Gaza strip, allowing for new 

sources of energy to be used in water desalination is very important for producing an 

independent source of electricity because it is a major issue by now in the Gaza strip. So, 

from the economic point of view, the cost of power consumption may be reduced by using 

natural resources such as natural gas to produce energy which can be supplied by the 

neighbors in Egypt.   

 
Although RO is a promising technology, it requires a high degree of skilled people to run 

the desalination plants. If not, the membranes have to be replaced often which is very 

expensive. It should also be obtained to secure the supply of chemicals needed for water 

desalination in order to ensure the continuous operation of the units. An environmental 

issue should be considered before the implementation of any large-scale or regional 

desalination plants. The Palestinian Water Authority must strictly control the private 

sectors that constructing desalination facilities for commercial purposes to make sure that 

they consider the environmental themes. 

 
At present, the brine of these national facilities is discharged into the surrounding 

environment, in the field or in the roads. Such brines must be appropriately disposed of 

under the control of Palestinian Water Authority. The product water quality has to be 

examined to confirm that it encounters with health necessities. An additional important 

concern is the pumping of brackish water from the aquifer. It is true that this water is not 

drinkable; however, it is situated in layers underneath the underground freshwater. 

Dropping of these layers of brackish water can cause reducing of the water table and 

interference of seawater disturbing the unsaturated area. The consequences of pumping 

such brackish water must be considered and examined to avoid any kind of damage to the 

aquifer. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

   

5.1    STATISTICAL ANALYSIS OF WATER QUALITY DATA 

 

The desalinated water quality data have been generated and used for the development of 

ANN predictive models for predicting the water quality of the desalination plants in Gaza 

strip. All generated data were entered as Microsoft Excel sheets, uploaded to SPSS and 

Minitab software, and analysed using Min, Max, mean and standard deviation tools. In 

addition the Pearson correlation coefficient (a measure of linear association) and paired 

sample t-test (p-value) were used to detect significant variations among the parameters at 

different desalination plants.   

 

5.1.1 Water quality parameters 

 

A total of 120 samples were collected from five major desalination plants in the Gaza strip 

and analysed for the evaluation purpose of water quality with respect to feed and permeate 

including: pressure, flowrate, temperature, pH, total dissolved solids, turbidity, 

conductivity, hardness, chloride, nitrate, magnesium and calcium. The sampling and 

laboratory analysis were carried out for a period of six months. The results on weekly 

trends along with results obtained from statistical analysis have been discussed as follow:  

 

5.1.1.1 Water temperature 

 

Temperature is one of the most important parameter in the environment, because almost all 

the physical, chemical and biological properties are governed by it. Temperature limits the 

saturation values of solids and gases that are dissolved in the water. The minimum, 

maximum, mean, standard deviation and standard error values of temperature measured 

during the period of this study are given in Table 5.1.  
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Table 5.1:Temperature statistical analysis among five desalination plants in the Gaza Strip 
   

Desalination plants Min. Max. Mean S.D S.E 

Al-Salam (Rafah) 
Feed water 
Product water 

 

23.60 

24.10 

 

24.90 

25.40 

 

24.33 

24.69 

 

0.36 

0.32 

 

0.0685 

0.0652 

Al-Sharqia (Khan-Younis) 
Feed water 
Product water 

 

15.20 

21.90 

 

26.00 

26.70 

 

23.90 

24.90 

 

3.04 

1.24 

 

0.6223 

0.2535 

Al-Balad (Deir-Al_ Balah) 
Feed water 
Product water 

 

22.90 

22.50 

 

26.70 

26.70 

 

24.02 

24.55 

 

0.68 

1.05 

 

0.1388 

0.2152 

Hanneaf (Gaza) 

Feed water 
Product water 

 

22.80 

23.30 

 

23.40 

23.90 

 

23.18 

23.58 

 

0.16 

0.14 

 

0.0333 

0.0305 

Al-Radwan (Bait-Lahyia) 

Feed water 
Product water 

 

21.60 

21.80 

 

25.80 

25.80 

 

23.83 

24.07 

 

1.23 

1.05 

 

0.2519 

0.2146 

 

From Table 5.1 it’s clear that the water temperature differed little by plant as indicated by 

the overall mean and standard deviation analysis. Temperature varied from 15.2 to 26.7 ºC. 

Temperature exceeding the value of 26 ºC was relatively rare and was observed during 

summer season.  

 

5.1.1.2 Pressure  

 

Abou Rayan and Khaled (2002) presented a case study of the operation and maintenance of 

a 2000 m3/d RO desalination plant over 6 years of operation. They found that the reverse 

osmosis system is sensible to changes in feed water temperature, and the product quality is 

sensitive to the change in feed water pressure. According to (Djebedjian et al. 2007) 

increasing the feed-water pressure increases the desalination facility productivity, but 

decreases the permeate salinity. The minimum, maximum, mean, standard deviation and 

standard error values of pressure during the period of this study are given in Table 5.2.  

 

 

 

 

 

 

 

 



Chapter -5  Results and Discussion   

  

52 

  

Table 5.2: Pressure statistical analysis among five desalination plants in the Gaza Strip 

Desalination plants Min. Max. Mean S.D S.E 

Al-Salam (Rafah) 

Feed water 
Permeate water 

 

14 

13.5 

 

15.5 

14 

 

15.14 

13.92 

 

0.34 

0.17 

 

0.0686 

0.0344 

Al-Sharqia (Khan-Younis) 

Feed water 
Permeate water 

 

11 

9.5 

 

13 

12 

 

12.02 

10.63 

 

0.75 

0.70 

 

0.1548 

0.1445 

Al-Balad (Deir-Al_ Balah) 
Feed water 
Permeate water 

 

14.5 

10.9 

 

14.5 

14.5 

 

14.50 

11.25 

 

0 

0.72 

 

0 

0.1484 

Hanneaf (Gaza)  
Feed water 
Permeate water 

 

12.5 

11 

 

17.5 

17 

 

15.25 

13.64 

 

1.39 

1.44 

 

0.2843 

0.2956 

Al-Radwan (Bait-Lahyia)  
Feed water 
Permeate water 

 

15.5 

15.5 

 

19.5 

15.5 

 

17.46 

15.5 

 

1.29 

0 

 

0.2652 

0 

 

From Table 5.2 it’s clear that pressure extent differed little by plant as indicted by the 

overall mean and standard deviation analysis. Pressure extent for feed water varied from 11 

to 19.5 bar and for product water ranged between 9.5 and 17 bar. Feed pressure 

measurement was found to be higher than permeate pressure for all desalination plants.     

 

5.1.1.3 Water flowrate  
 
The RO membranes are the core of RO system and specific data points need to be collected 

to determine the strength of the RO membranes. When the water temperature decreases it 

becomes more adhesive and the RO permeate flow will be dropped as it requires more 

pressure to push the water through the membrane. Similarly, when the water temperature 

increases the RO permeate flow will be increased. As a result, performance data for an RO 

system must be normalized so that flowrate variations are not interpreted as abnormal 

when no problem exists (http://puretecwater.com/what-is-reverse-osmosis.html). The 

minimum, maximum, mean, standard deviation and standard error values of pressure 

during the period of this study are given in Table 5.3. 
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Table 5.3: Flowrate statistical analysis among five desalination plants in the Gaza Strip 

 

From Table 5.3 it’s clear that feed and permeate flow rate degree is differed by plant as 

observed from the overall mean and standard deviation analysis. Al-Salam plant was found 

to have the highest production rate of about 420 m3/day at the highest flow rate (60 m3/h) 

while Deir-Al_Balah plant were found to have nearly same production rate (350-400 

m3/day) at a flowrate of 50 m3/day. In terms of recovery rate, the best performing plant is 

Al-Sharqia plant with about 77.88% while the weakest performing plant is Al-Radwan 

with 51.45%. Although the five plants have the same RO membrane type supplied by 

Koch, they have some slight differences in terms of performance. 

 

5.1.1.4 pH 
 
The test of pH is one of the most common analysis in water and great indicators of water 

quality. The pH is controlled by the amount of dissolved carbon dioxide CO2, carbonates 

CO3
2- and bicarbonate HCO3

-
 (Domenico and Schwarts, 1990). Levels of pH are important 

to be known and controlled as lower and higher values of pH may lead to pipe corrosion 

and incrustation (WHO, 2003).  

 
Generally, the desalination medium is acidic which is considered as a common trend for 

RO membranes applied for desalination. The minimum, maximum, mean, standard 

deviation and standard error values of all pH data are given in Table 5.4.  

 

 

Desalination plants Min. Max. Mean S.D S.E Recovery% 

Al-Salam (Rafah) 

Feed water 
Permeate water 

 

72 

36 

 

78 

60 

 

73.77 

49.14 

 

2.06 

6.36 

 

0.4203 

1.2973 

66.61 

Al-Sharqia (Khan-Younis) 
Feed water 
Permeate water 

 

22 

17 

 

25.4 

19 

 

23.20 

18.07 

 

0.79 

0.50 

 

0.1624 

0.1023 

77.88 

Al-Balad (Deir-Al_ Balah) 

Feed water 
Permeate water 

 

60 

42 

 

96 

50 

 

80.05 

47.77 

 

13.79 

1.79 

 

2.815 

0.3657 

59.67 

Hanneaf (Gaza)  
Feed water 
Permeate water 

 

10.2 

5.4 

 

16.08 

12 

 

14.08 

9.88 

 

1.48 

1.62 

 

0.3028 

0.3314 

70.17 

Al-Radwan (Bait-Lahyia)  
Feed water 
Permeate water 

 

15.6 

8.1 

 

18.6 

9.6 

 

17.24 

8.87 

 

0.95 

0.48 

 

0.1942 

0.0990 

51.45 
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Table 5.4: pH statistical analysis among five desalination plants in the Gaza Strip 

Desalination plants Min. Max. Mean S.D S.E Removal % 

Al-Salam (Rafah) 

Feed water 
Permeate water 

 

7.57 

6.06 

 

7.84 

6.54 

 

7.77 

6.30 

 

0.06 

0.14 

 

0.0121 

0.0286 

18.91 

Al-Sharqia (Khan-Younis) 

Feed water 
Permeate water 

 

7 

5.75 

 

7.83 

6.87 

 

7.35 

6.29 

 

0.22 

0.30 

 

0.0456 

0.0619 

14.42 

Al-Balad (Deir-Al_Balah) 
Feed water 
Permeate water 

 

6.96 

5.33 

 

7.12 

6.32 

 

7.05 

5.76 

 

0.04 

0.24 

 

0.0084 

0.0490 

18.29 

Hanneaf (Gaza) 
Feed water 
Permeate water 

 

7 

5.3 

 

7.24 

5.70 

 

7.11 

5.51 

 

0.05 

0.10 

 

0.0115 

0.0209 

22.50 
 

Al-Radwan (Bait-Lahyia) 
Feed water 
Permeate water 

WHO standard 

Palestinian standard 

 

7.11 

5.12 

 

7.29 

6.31 

 

7.20 

5.61 

 

0.06 

0.36 

 

0.0129 

0.0750 

22.08% 

 

 

6.5-8 

6.5-8.5 

 
As shown in Table.5.4 pH analytical data of inlet in all plants ranging within the 

acceptable WHO standards (6.5-8). While, pH of the permeate in most of the plants found 

to be less than WHO standards, as a result of lacking pH adjustment and clear control on 

desalination plants. Thus, after desalination, pH needs to be increased by adding NaOH. If 

this operation does not take place at RO plants, the pH of the water will be very low. The 

pH analytical data in the permeate water samples show that about 80% of the samples have 

pH lower than 6.5, the rest 20% of the samples have pH between 6.54–6.87 (Table 5.4). 

 

5.1.1.5 Electrical conductivity (EC) 
 

The ability of water to conduct an electric current is known as conductivity or specific 

conductance and depends on the concentration of ions in solution. Conductivity is 

measured in micro semen's per centimeter (µs/cm). The minimum, maximum, mean, 

standard deviation and standard error values of all conductivity data are given in Table 5.5.   
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Table 5.5: Water conductivity statistical analysis among five desalination plants in Gaza Strip 

Desalination plants Min. Max. Mean S.D S.E Removal % 

Al-Salam (Rafah) 

Feed water 
Permeate water 

 

4620 

133.5 

 

5180 

164.4 

 

4841.66 

147.94 

 

137.64 

9.03 

 

28.09 

1.843 

96.94 

Al-Sharqia (Khan-Younis) 

Feed water 
Permeate water 

 

3790 

479 

 

4400 

693 

 

4029.16 

571.53 

 

151.02 

67.90 

 

30.82 

13.86 

85.81 

Deir-Al_Balah 
Feed water 
Permeate water 

 

5830 

232 

 

6900 

275 

 

6089.16 

249.07 

 

257.74 

11.97 

 

52.61 

2.44 

95.90 

 

 

Hanneaf (Gaza) 
Feed water 
Permeate water 

 

2470 

57.30 

 

4920 

115.5 

 

3423.12 

72.30 

 

785.94 

18.62 

 

160.43 

3.80 

97.88 

Al-Radwan (Bait-Lahyia) 
Feed water 
Permeate water 

WHO standard (µs/cm) 

Palestinian standard 

 

861 

16.07 

 

 

943 

166 

 

900.41 

53.78 

 

21.75 

37.31 

 

4.43 

7.61 

94.02 

 

 

2000 

2000 

 

From Table.5.5 it is clear that all feed readings were found to be higher than WHO and 

Palestinian standards except for Al-Radwan plant which had an ranging of EC readings 

(861-943 µs/cm). Therefore, about 80% of inlet samples are not complying with WHO and 

Palestinian drinking water standards. These relatively high EC readings of the inlets 

(2470–6900 µs/cm) were found to be significantly reduced in the produced water of all 

plants (less than 1000 µs/cm) and fit with WHO and Palestinian standards. This may 

indicates the high desalination efficiency and salt rejection of the RO membranes of these 

plants, however, the removal rate among the plants was found to be ranging between 

(85.81-97.88%).  

 
As all feed concentrations of all plants were found to be higher than WHO and Palestinian 

standards, however, concentrations of the permeate of all plants reasonably dropped to 

reach around 100 µs/cm or less for Al-Radwan and Hanneaf plants and 150 µs/cm or less 

for Al-Salam plant and 250 µs/cm or less at Deir-Al_Balah plant. Such concentrations 

comply with both WHO and the Palestinian standards. 

 

5.1.1.6 Turbidity 

 

High levels of turbidity affect water taste negatively and indicate the presence of 

undesirable particles in the water. Principally, turbidity is a determining parameter for 

drinking water quality. Generally, some suspended matter or impurities such as clay, silt, 
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sand, and other particles may cause water turbidity. The minimum, maximum, mean, 

standard deviation and standard error values of all turbidity data are given in Table 5.6.  

 
Table 5.6: Water turbidity statistical analysis among five desalination plants in Gaza Strip 

Desalination plants Min. Max. Mean S.D S.E Removal % 

Al-Salam (Rafah) 
Feed water 
Permeate water 

 

0.20 

0.08 

 

1.02 

0.31 

 

0.32 

0.17 

 

0.17 

0.06 

 

0.036 

0.011 

46.87 

Al-Sharqia (Khan-Younis) 
Feed water 
Permeate water 

 

0.11 

0.09 

 

0.31 

0.20 

 

0.21 

0.14 

 

0.05 

0.04 

 

0.012 

0.079 

33.33 

Deir-Al_Balah 
Feed water 
Permeate water 

 

0.13 

0.08 

 

0.36 

0.27 

 

0.20 

0.15 

 

0.06 

0.04 

 

0.012 

0.009 

25 

Hanneaf (Gaza) 

Feed water 
Permeate water 

 

0.14 

0.09 

 

0.96 

0.24 

 

0.31 

0.16 

 

0.18 

0.03 

 

0.036 

0.007 

48.38 

Al-Radwan (Bait-Lahyia) 
Feed water 
Permeate water 

WHO standard (NTU) 

Palestinian standard (NTU) 

 

0.19 

0.08 

 

0.70 

0.39 

 

0.40 

0.17 

 

0.17 

0.07 

 

0.035 

0.016 

57.50 

 

 

5 

1 

 
From Table.5.6 it is understood that the turbidity levels for both feed and permeate of all 

five plants are below WHO and Palestinian standards.  

 

5.1.1.7 Total dissolved solids (TDS)  

 

According to Al-Jamal and Al-Yaqubi (2000) the high levels of TDS and chloride in the 

groundwater may cause high salinity in the water supply (Hilles and Al-Najar, 2011). The 

desalination productivity is substantially measured by salts removal.  

 
Mostly, conductivity, TDS, hardness, and the presence of ions like chloride, sodium, 

magnesium and calcium show how much the water is brackish. The minimum, maximum, 

mean, standard deviation and standard error values of all TDS generated data are given in 

Table 5.7.  
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Table 5.7: Water TDS statistical analysis among five desalination plants in the Gaza Strip 

Desalination plants Min. Max. Mean S.D S.E Removal % 

Al-Salam (Rafah) 

Feed water 
Permeate water 

 

2860 

82.8 

 

6026 

101.9 

 

3123.08 

91.72 

 

624.09 

5.60 

 

127.39 

1.143 

97.06 

Al-Sharqia (Khan-Younis) 

Feed water 
Permeate water 

 

2350 

297 

 

2730 

430 

 

2497.83 

354.31 

 

93.78 

42.08 

 

19.14 

8.58 

85.81 

Deir-Al_Balah 
Feed water 
Permeate water 

 

3610 

143.7 

 

4280 

170.7 

 

3775.45 

154.45 

 

159.85 

7.42 

 

32.63 

1.51 

95.90 

Hanneaf (Gaza) 
Feed water 
Permeate water 

 

1531 

31.8 

 

3050 

71.6 

 

2122.16 

44.82 

 

487.43 

11.55 

 

99.49 

2.35 

97.88 

Al-Radwan (Bait-Lahyia) 
Feed water 
Permeate water 

WHO standard (mg/l) 

Palestinian standard (mg/l) 

 

534 

10 

 

590.72 

102.9 

 

559.83 

33.34 

 

14.44 

23.13 

 

2.94 

4.72 

94.04 

 

 

1000 

1000 

 

From Table.5.7 it is clear that all feed readings of TDS found to be higher than WHO and 

Palestinian standards except for Al-Radwan plant which had a ranging of TDS 

concentrations (534-590.72 mg/l). Hence, about 80% of inlet samples are not complying 

with WHO and Palestinian drinking water standards. These relatively high TDS values of 

the inlets (1531–6026 mg/l) found to be extremely reduced in the produced water of all 

plants. This may shows the high desalination efficiency and salt rejection of the RO 

membranes of the plants, as most of the high TDS measured in the plant feed is caused by 

the presence of salts at high concentrations. However, the removal rate among the plants 

was found to be ranging between (85.81-97.88%). As all feed concentrations of all plants 

were found to be higher than WHO and Palestinian standards, on the other hand, 

concentrations of the permeate of all plants reasonably dropped to reach around 100 mg/l 

or less for Al-Radwan, Hanneaf and Al-Salam plants, where as 200 mg/l or less for Deir-

Al_Balah plant and 500 mg/l or less at Al-Sharqia plant. All of these concentrations found 

to be with the terms of both WHO and Palestinian standards. As shown in Table 5.7 the 

highest and lowest TDS removal was for Hanneaf plant (97.88%) and Al-Sharqia plant 

(85.81%) respectively. 

 

5.1.1.8 Total hardness (TH) 

 

According to Bruggen et al. (2001) water hardness is a key concern attendant with 

groundwater, as high levels of hardness adversely impact water quality. According to 
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WHO and Palestinian standards, the maximum allowable value for hardness as determined 

by CaCO3 concentration should be 500 mg/l respectively. The minimum, maximum, mean, 

standard deviation and standard error values of all hardness generated data are given in 

Table 5.8.  

   
Table 5.8: Water hardness statistical analysis among five desalination plants in Gaza Strip 

Desalination plants Min. Max. Mean S.D S.E Removal % 

Al-Salam (Rafah) 

Feed water 
Permeate water 

 

310.59 

7.92 

 

386.45 

11.95 

 

367.45 

10.43 

 

17.99 

1.10 

 

3.67 

0.22 

97.16 

Al-Sharqia (Khan-Younis) 
Feed water 
Permeate water 

 

260.83 

11.15 

 

326.68 

15.93 

 

301.09 

13.16 

 

14.62 

1.39 

 

2.98 

0.28 

95.62 

Al-Balad Deir-Al_Balah 
Feed water 
Permeate water 

 

964.39 

15.84 

 

1203.84 

23.90 

 

1104.17 

19.30 

 

42.54 

2.00 

 

8.68 

0.41 

98.25 

Hanneaf (Gaza) 

Feed water 
Permeate water 

 

703.56 

7.92 

 

1446.19 

17.82 

 

1070.56 

11.89 

 

209.33 

2.29 

 

42.73 

0.47 

98.88 

Al-Radwan (Bait-Lahyia) 
Feed water 
Permeate water 

WHO standard (mg/l) 

Palestinian standard (mg/l) 

 

322.60 

7.92 

 

415.29 

65.73 

 

379.65 

17.99 

 

18.10 

2.40 

 

3.69 

2.53 

92.07 

 

 

500 

500 

 

As presented in Table 5.8 the feeds of Deir-Al_Balah and Hanneaf were found to have 

higher values of hardness as compared by WHO and Palestinian standards. On the other 

hands, feed water of Al-Radwan, Al-Salam and Al-Sharqia plants were found to be lower 

hardness values. The permeate hardness of all plants was found to be lower and acceptable 

levels that meet with both WHO and Palestinian standards. In addition, hardness removal 

percentages were found to vary from 92 % to 99%.  

 

5.1.1.9 Chloride 

 

The existence of chloride is well thought-out as one of the foremost causes for 

groundwater salinity in the Gaza strip, taking into account that levels of chloride 

concentrations found in the Gaza groundwater are considerably higher than those permitted 

by WHO and Palestinian standards. The minimum, maximum, mean, standard deviation 

and standard error values of all chloride generated data are given in Table 5.9. As shown in 

Table 5.9, about 80% of all investigated feed samples during this study were found to have 

high chloride concentrations, ranging from 649.58 mg/l to 1879.58 mg/l. The maximum 
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chloride concentration was found in Al-Balad (Deir-Al_Balah) plant feed (more than 1800 

mg/l) while the lower level of chloride concentrations was found at Al-Radwan plant feed 

(121.49 mg/l-147.75mg/l). The feed water of the other three plants was found to have 

chloride concentrations which range between (1058-1674 mg/l).  

 
Table 5.9: Water chloride statistical analysis among five desalination plants in the Gaza Strip 

Desalination plants Min. Max. Mean S.D S.E Removal % 

Al-Salam (Rafah) 
Feed water 
Permeate water 

 

1079.15 

39.31 

 

1165.80 

57.57 

 

1121.56 

47.69 

 

2.81 

4.37 

 

5.03 

0.89 

95.74 

Al-Sharqia (Khan-Younis) 
Feed water 
Permeate water 

 

923.47 

107.12 

 

1010.47 

153.65 

 

953.32 

126.05 

 

19.06 

13.75 

 

3.81 

2.81 

86.77 

Deir-Al_Balah 

Feed water 
Permeate water 

 

1622.3 

40.63 

 

1879.58 

81.26 

 

1674.51 

70.88 

 

51.70 

7.85 

 

10.55 

1.60 

95.76 

Hanneaf (Gaza)  
Feed water 
Permeate water 

 

649.58 

18.04 

 

1712.73 

36.94 

 

1058.14 

27.02 

 

322.26 

5.34 

 

65.78 

1.09 

97.44 

Al-Radwan (Bait- Lahyia)  
Feed water 
Permeate water 

WHO standard (mg/l) 

Palestinian standard (mg/l) 

 

121.49 

10.72 

 

147.75 

33.24 

 

135.54 

18.36 

 

6.60 

5.28 

 

1.34 

1.07 

86.45 

 

 

250 

250 

 
The permeate water of all plants was found to have lower chloride concentrations than 

what is allowed by WHO and Palestinian standards. The rejection percentage of chloride 

concentrations was found to be ranging between 86%–97%.  

 

5.1.1.10 Nitrate  

 

According to Levallois et al. (2005) nitrate is considered to be as the most predominant 

pollutant in the groundwater over all world. All organic and inorganic bases of nitrogen are 

commonly converted to nitrate. After decreasing, nitrate can be biologically transmuted to 

nitrogen gas. The increasing pollution of public and individual drinking water wells by 

nitrate is mostly due to the extensive use of fertilizers and waste (Khademikia et al. 2013). 

According to Bohdziewicz et al (1999) high levels of nitrates pollution, which are common 

occurrences in Gaza, are well thought-out as a health risk, as they are the reason of blue 

babies disease (Mogheir, et al. 2013). The minimum, maximum, mean, standard deviation 

and standard error values of all NO3
-generated data are given in Table 5.10.  
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The nitrate levels over all plants (feed) are much higher than permitted level by WHO and 

PS standards. Conversely, the permeate water of all plants has lower and allowable 

concentration levels of nitrates by both WHO and Palestinian standards except for Al-

Sharqia (Khan-Younis) plant, where the permeate water (99.32-145.81 mg/l) was found to 

be higher than the allowable WHO and Palestinian standards. 

 
Table 5.10: Nitrate level statistical analysis among five desalination plants in the Gaza Strip 

Desalination plants Min. Max. Mean S.D S.E Removal % 

Al-Salam (Rafah) 
Feed water 
Permeate water 

 

53.34 

5.31 

 

76.90 

10.36 

 

65.26 

8.19 

 

6.22 

1.21 

 

1.27 

0.24 

87.45 

Al-Sharqia (Khan-Younis) 
Feed water 
Permeate water 

 

133..22 

99.32 

 

404.75 

145.81 

 

272.73 

127.41 

 

65.43 

14.75 

 

13.35 

3.01 

53.28 

Al-Balad (Deir-Al_Balah) 

Feed water 
Permeate water 

 

116.36 

11.63 

 

154.26 

20.56 

 

138.10 

16.87 

 

10.83 

2.10 

 

2.21 

0.42 

87.78 

Hanneaf (Gaza)  
Feed water 
Permeate water 

 

122.85 

8.27 

 

203.94 

13.25 

 

169.69 

11.02 

 

20.51 

0.97 

 

4.18 

0.19 

93.50 

Al-Radwan (Bait-Lahyia)  
Feed water 
Permeate water 

WHO standard (mg/l) 

Palestinian standard (mg/l) 

 

113 

2.91 

 

142.60 

20.76 

 

128.02 

9.84 

 

8.11 

5.44 

 

1.65 

1.11 

92.31 

 

 

50 

 50
* 

 

*
Note:  In the absence of alternative source of water, the ratio of nitrate (70 mg/l) is allowed 

to be as maximum value (According to Palestinian Standard - 2005).  

 
Significant nitrate removal was found in Hanneaf plant with nitrate levels reduced from 

nearly 170 mg/l for feed to 11 mg/l for permeate, where the removal percentage was found 

to be 93.5%. 

 

5.1.1.11 Calcium 

 

According to Kozisek (2003) a certain amount of Ca2+ is essential in drinking water not 

only because of inducing CaCO3 precipitation, however, because of several health reasons. 

Calcium is very important element for human growth mainly for babies. About 20% of the 

suggested daily amount mostly comes from drinking water (Hills and al-Najar, 2011). The 

minimum, maximum, mean, standard deviation and standard error values of all Calcium 

generated data are given in Table 5.11.  
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Table 5.11: Water calcium statistical analysis among five desalination plants in Gaza Strip 
 

Desalination plants Min. Max. Mean S.D S.E Removal % 

Al-Salam (Rafah) 
Feed water 
Permeate water 

 

52.95 

0.79 

 

63.87 

3.23 

 

59.98 

1.64 

 

2.81 

0.65 

 

0.573 

0.132 

97.26 

Al-Sharqia (Khan-Younis) 
Feed water 
Permeate water 

 

39.89 

1.37 

 

52.37 

3.23 

 

46.38 

2.07 

 

2.53 

0.53 

 

0.516 

0.109 

95.53 

Al-Balad (Deir-Al_Balah) 
Feed water 
Permeate water 

 

136.86 

2.36 

 

176.17 

7.92 

 

162.30 

3.21 

 

7.03 

1.15 

 

1.43 

0.235 

98.02 

Hanneaf (Gaza)  

Feed water 
Permeate water 

 

211.83 

1.58 

 

384.82 

4.84 

 

307.93 

2.57 

 

48.76 

0.94 

 

9.95 

0.193 

99.16 

Al-Radwan (Bait-Lahyia)  

Feed water 
Permeate water 

WHO standard (mg/l) 

Palestinian standard (mg/l) 

 

81.84 

1.37 

 

287.42 

16.76 

 

103.54 

3.90 

 

39.40 

3.32 

 

8.04 

0.678 

96.23 

 

 

100 

100 

 
Calcium concentration levels were investigated for the feed and permeate of all plants and 

compared with WHO and Palestinian standards maximum allowable values. As shown in 

Table 5.11, the feed water of Al-Balad (Deir-Al_Balah), Hanneaf (Gaza) and al-Radwan 

plants were found to have higher calcium concentration levels than WHO and Palestinian 

standards. While the feed water of Al-Salam and Al-Sharqia (Khan-Younis) plants were 

found to be lower than WHO and PS recommended levels. The calcium concentration in 

product water samples ranges from 0.79 mg/l to 16.76 mg/l, however, these concentrations 

level is lower than WHO and Palestinian standards.  

 
5.1.1.12 Magnesium 

 

Magnesium is the fourth supreme copious cation in the human-being bodies and the second 

greatest copious cation in intracellular runny liquid. It is a co-factor for about 350 cellular 

enzymes, some of which are intricate in driving metabolism. Furthermore, it is involved in 

protein and nucleic acid synthesis and is required for regular vascular tone and insulin 

sensitivity. Low magnesium extents are attendant with endothelial dysfunction, increased 

vascular reactions, raised circulating levels of C-reactive protein and decreased insulin 

sensitivity. Low magnesium status has been implicated in hypertension, coronary heart 

disease, type 2 diabetes mellitus and metabolic syndrome (WHO, 2009). The minimum, 

maximum, mean, standard deviation and standard error values of all magnesium generated 

data are given in Table 5.12.  
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From Table 5.12 it is clear that the concentration levels of Mg2+, the feed water of Al-

Salam, Al-Radwan and Al-Sharqia plants were found to have lower magnesium 

concentrations than what is allowed by WHO and Palestinian standards while the feed water 

of Al-Balad (Deir-Al_Balah) plants was found to be above the permitted standards. Unlike 

Hanneaf plant, which have the higher level than allowable in the WHO standards, while 

found to have lower than the allowable in the Palestinian standards. The permeate water of 

all plants, however, was found to have lower levels than what is permitted by both WHO 

and Palestinian standards. Magnesium removal percentage was found to be ranging from 

94% to 98%. 

   
Table 5.12: Water Mg

2+
 statistical analysis among five desalination plants in Gaza Strip 

Desalination plants Min. Max. Mean S.D S.E Removal % 

Al-Salam (Rafah) 

Feed water 
Product water 

 

43.25 

0.48 

 

57.40 

1.95 

 

52.78 

1.53 

 

3.16 

0.43 

 

0.064 

0.087 

97.10 

Al-Sharqia (Khan-Younis) 
Feed water 
Product water 

 

39.10 

0.97 

 

169.99 

2.89 

 

55.32 

2.06 

 

35.17 

0.46 

 

7.17 

0.094 

96.26 

Al-Balad (Deir El Balah) 
Feed water 
Product water 

 

151.02 

0.48 

 

187.23 

4.35 

 

169.47 

2.79 

 

7.52 

0.80 

 

1.53 

0.163 

98.35 

Hanneaf (Gaza)  
Feed water 
Product water 

 

9.13 

0.16 

 

117.50 

1.93 

 

71.06 

1.31 

 

26.07 

0.94 

 

5.32 

0.105 

98.15 

Al-Radwan (Bait-Lahyia)  

Feed water 
Product water 
WHO standard (mg/l) 

Palestinian standard 

 

5.62 

0.24 

 

40.98 

5.78 

 

32.85 

1.91 

 

6.36 

1.12 

 

1.29 

0.228 

94.18 

 

 

60 

100 

 

 

5.1.2 Water quality parameters Pearson’s correlation 
 
Correlation analysis is basically measures the relationship between two or more 

functionally independent variables. In water quality the correlation analysis is used to 

measure the strength and statistical significance of the relationship between two or more 

random water quality parameters. The strength of the relationship between two random 

parameters can be determined through calculation of a correlation coefficient r. The value 

of this coefficient ranges between -1 and 1. The value which is close to -1 shows a strong 

negative correlation.  

 



Chapter -5  Results and Discussion   

  

63 

  

When r is close to +1 is showing a strong positive correlation between the two parameters. 

The closer the value of r is to zero, it means the correlation is poorer (Armah et al. 2012). 

Correlation coefficient and paired t-test are calculated using SPSS and Minitab software's. 

The generated water data were analysed using paired t-test to detect variations in the 

measured parameters with location (desalination plant). Pearson’s correlation was used to 

detect linear correlations between various parameters and locations. Table 5.13 shows the 

Pearson's correlation between permeate water quality parameters (temperature, pressure, 

flowrate, pH, EC, TDS, turbidity, hardness, chloride, calcium, magnesium and nitrate) for 

the values of the six months collected data to develop the water quality ANN models. From 

Table 5.13 it can be seen that pH is inversely correlated with pressure, turbidity and 

directly with the remaining parameters. Calcium also is correlated directly with 

temperature, pressure, turbidity, hardness, and magnesium, while it is inversely correlated 

with flowrate, pH, EC, TDS, chloride and nitrate. Flowrate is correlated inversely with 

pressure, turbidity, calcium, magnesium and nitrate as well as directly with pH, EC, TDS, 

hardness and chloride. TDS is correlated inversely with turbidity, pressure and calcium, 

but it is correlated directly with temperature, pH, EC, chloride, magnesium and nitrate. 

  
              Table 5.13: Pearson's correlation coefficient for values of permeate water parameters 

Parameters Temp P Flow pH EC TDS Turbidity TH Cl
- 

Ca
2+ 

Mg
2+ 

NO3
- 

Temp 1            

P -0.30 1           

Flow 0.27 -0.29 1          

pH 0.55 -0.31 0.37 1         

EC 0.37 -0.76 0.08 0.55 1        

TDS 0.37 -0.76 0.08 0.55 1 1       

Turbidity -0.12 0.18 -0.06 -0.04 -0.15 -0.15 1      

TH 0.28 -0.07 0.05 0.02 0.08 0.08 0.06 1     

Cl
- 

0.40 -0.81 0.19 0.56 0.99 0.99 -0.17 0.07 1    

Ca
2+ 

0.17 0.12 -0.15 -0.06 -0.08 -0.08 0.12 0.86 -0.11 1   

Mg
2+ 

-0.13 -0.13 -0.01 0.03 0.22 0.22 0.05 0.05 0.20 0.04 1  

NO3
- 

0.30 -0.62 -0.22 0.47 0.94 0.94 -0.13 -0.02 0.89 -0.09 0.22 1 

 

Chloride is inversely correlated with turbidity, pressure and calcium where as it is directly 

correlated with temperature, pH, EC, TDS, magnesium and nitrate. Nitrate is inversely 

correlated with pressure, flowrate and turbidity as well as directly with temperature, pH, 

EC, TDS and chloride.  
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5.1.3 Spatial variations analysis 

A major concern in managing water properties is whether or not water quality variables 

have changed over time or place. The two-sample student's t-test (p-Value) is most likely 

the utmost commonly used statistical test for this purpose. The t-test is robust for non-

normal distributions if the distributions have the same shape (either symmetric or skewed) 

and sample sizes are equal. In addition t-test is appropriate for unequal variances if the 

sample sizes are equal (Montgomery and Loftis, 1987). Paired t-test was used to detect 

variations among the used parameters with location/desalination plants in the Gaza strip. 

Pearson’s correlation was used to detect linear correlations between various desalination 

facilities.  

 
Table 5.14 summarises the paired t test and the Pearson’s correlations of temperature, 

pressure, flow rate, pH, EC and TDS in the permeate water quality data. All these results 

are obtained by using SPSS software program. 

 

Table 5.14: Paired t test(p-value) & Pearson correlation (r) results for permeate water  

parameters including: (temperature, pressure, flowrate, pH, turbidity and EC) 

  
Paired 

locations 

Temp 

r     t-test(p) 

Pressure 

r   t-test(p) 

Flow rate 

r     t-test(p) 

pH 

r     t-test(p) 

Turbidity 

r   t-test(p) 

EC 

r   t-test(p) 

1&2 F
* 

        P
** 

0.74  0.461 
0.75  0.222 

0.13<0.0001* 

0.47 <0.0001* 

-0.24   <0.0001* 

-0.04   <0.0001* 

-0.53 <0.0001* 

0.14     0.944 

0.15  0.007* 

0.34  0.068 

0.93 <0.0001* 

-0.15<0.0001* 

1&3 F 

        P 

0.50  0.014* 

0.66  0.435 

0.00 <0.0001* 

0.08 <0.0001* 
-0.54     0.052 

-0.53     0.397 

0.29   <0.0001* 

0.30   <0.0001* 
0.27  0.003* 

0.30  0.120 

0.68 <0.0001* 

0.58 <0.0001* 

1&4 F 

        P 

0.65 <0.0001* 

0.51  <0.0001* 

-0.33   0.704 
-0.14   0.297 

-0.41   <0.0001* 

-0.56   <0.0001* 

0.49   <0.0001* 

0.48   <0.0001* 

-0.11 0.826 
0.32  0.727 

-0.24<0.0001* 

0.26 <0.0001* 

1&5 F 

        P   

0.71  0.024* 

0.59  0.004* 

-0.02<0.0001* 

0.00 <0.0001* 

0.37    <0.0001* 

0.50    <0.0001* 

0.01   <0.0001* 

0.46   <0.0001* 

0.29  0.049* 

0.31  0.732 

0.90 <0.0001* 

0.55 <0.0001* 

2&3 F 

        P 

0.38  0.849 
0.68  0.045* 

0.00 <0.0001* 

-0.31  0.045* 
0.17    <0.0001* 

0.20    <0.0001* 
-0.40  <0.0001* 

0.01   <0.0001* 
0.38  0.357 
0.29  0.843 

0.83 <0.0001* 
-0.39<0.0001* 

2&4 F 

        P 

0.59  0.242 

0.73 <0.0001* 

-0.49<0.0001* 

-0.13<0.0001* 

0.37    <0.0001* 

0.19    <0.0001* 

-0.13  <0.0001* 

0.13   <0.0001* 

-0.10 0.025* 

0.12   0.091 
-0.34  0.002* 

0.37 <0.0001* 

2&5 F 

        P 

0.62  0.883 
0.85 <0.0001* 

-0.33<0.0001* 

0.00 <0.0001* 

0.01    <0.0001* 

0.02    <0.0001* 

-0.20    0.009* 

-0.02  <0.0001* 

0.03 <0.0001* 

0.061 0.123 
0.93 <0.0001* 

0.11 <0.0001* 

3&4 F 

        P 

0.32 <0.0001* 

0.53 <0.0001* 

0.00    0.013* 

0.22 <0.0001* 
0.64    <0.0001* 

0.60    <0.0001* 

0.13   <0.0001* 

-0.22  <0.0001* 
-0.06 0.012* 

0.32   0.119 
-0.27<0.0001* 

0.01 <0.0001* 

3&5 F 

        P 

0.57   0.371 

0.67   0.016* 

0.00 <0.0001* 

0.00 <0.0001* 
-0.66   <0.0001* 

-0.43   <0.0001* 

0.29   <0.0001* 

-0.43    0.110 
0.02 <0.0001* 

-0.17  0.206 
0.76 <0.0001* 

0.39 <0.0001* 

4&5 F 

        p 

0.75   0.009* 

0.68   0.014* 

0.24 <0.0001* 

0.00 <0.0001* 
-0.53   <0.0001* 

-0.45     0.009* 

0.14   <0.0001* 

0.33     0.238 
0.35  0.021* 

0.41  0.508 
-0.19<0.0001* 

0.30    0.010* 

 
Note: F

*
 (Feed water) and P

**
 (Permeate water)         
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The results indicate that there are high significant differences in the pressure, flowrate, pH 

and EC for most of measured values at all locations, but no significant differences were 

noted for water temperature and turbidity at some locations. These significance differences 

justify the performance of water quality monitoring parameters over the Gaza strip 

desalination plants and prove that there is a real difference between the plants chosen for 

the water quality predictive models development. Pearson correlation in temperature found 

to be strong and moderate among all locations for feed and permeate water samples. 

Correlation in pressure, flowrate, pH, turbidity and EC among all plants is found to be    

weak. Table 5.15 illustrates the results of statistical analysis (paired t-test and Pearson 

correlation) of TDS, chloride, hardness, calcium, magnesium and nitrate in feed and 

permeate water samples. 

 

Table 5.15: Paired t test(p-value) & Pearson correlation (r) results for permeate water  

parameters including: (TDS, Cl
-
 , hardness, nitrate, Ca

2+
 and Mg

2+
) 

 
Paired 

locations     

TDS 

r    t-test(p) 

Chloride 

r    t-test(p) 

Hardness 

r    t-test(p) 

Nitrate 

r    t-test(p) 

Calcium 

r   t-test(p) 

Magnesium 

r     t-test(p) 

1&2 F* 

        P
** 

0.08 <0.0001* 

-0.16 <0.0001* 

0.11  <0.0001* 

-0.16  <0.0001* 

0.69  <0.0001* 

0.45  <0.0001* 

0.26 <0.0001* 

0.07 <0.0001* 

0.34 <0.0001* 
0.58   0.001* 

0.13   0.725 
-0.03  0.259 

1&3 F 

        P 

0.04 <0.0001* 

0.58 <0.0001* 

-0.12  <0.0001* 

0.20  <0.0001* 

0.54  <0.0001* 

0.12  <0.0001* 

0.55 <0.0001* 

0.69 <0.0001* 

0.38 <0.0001* 
0.23 <0.0001* 

0.47 <0.0001* 

0.38 <0.0001* 

1&4 F 

        P 

-0.18 <0.0001* 

0.27 <0.0001* 

0.43   0.330 

0.47   <0.0001* 

0.52  <0.0001* 

0.01     0.016* 

0.37 <0.0001* 

-0.02 <0.0001* 

0.32 <0.0001* 
0.02    0.001* 

0.50   0.001* 

0.51   0.027* 

1&5 F 

        P   

0.16 <0.0001* 

0.55 <0.0001* 

0.68   <0.0001* 

0.48   <0.0001* 

0.49    0.003* 

0.32    0.024* 

0.16 <0.0001* 

0.31   0.182 

0.33 <0.0001* 
0.10   0.011* 

0.03 <0.0001* 

0.29   0.238 

2&3 F 

        P 

0.82 <0.0001* 

-0.39 <0.0001* 

-0.06   <0.0001* 

-0.18   <0.0001* 

0.58  <0.0001* 

-0.01  <0.0001* 

0.39 <0.0001* 

0.21 <0.0001* 

0.57 <0.0001* 
0.40 <0.0001* 

0.02 <0.0001* 

0.03   0.459 

2&4 F 

        P 

-0.34   0.002* 

0.36 <0.0001* 

-0.30    0.139 

0.21   <0.0001* 

0.32  <0.0001* 

-0.15    0.035* 
0.01 <0.0001* 

0.13 <0.0001* 

0.34 <0.0001* 
0.22    0.028* 

0.13   0.072 
0.15   0.229 

2&5 F 

        P 

0.84 <0.0001* 

0.11 <0.0001* 

0.04   <0.0001* 

-0.07   <0.0001* 

0.32  <0.0001* 

0.21    0.198 

0.10  <0.0001* 

0.05  <0.0001* 

0.18 <0.0001* 
0.33    0.039* 

0.07   0.005* 

-0.10  0.299 

3&4 F 

        P 

-0.28 <0.0001* 

0.01 <0.0001* 

-0.01   <0.0001* 

-0.08   <0.0001* 

0.13    0.436 

0.15  <0.0001* 

0.21  <0.0001* 

-0.15 <0.0001* 

0.41 <0.0001* 
0.10    0.082 

0.10 <0.0001* 

0.39 <0.0001* 

3&5 F 

        P 

0.67 <0.0001* 

0.39 <0.0001* 

-0.26   <0.0001* 

-0.44   <0.0001* 

0.26  <0.0001* 

0.21    0.265 

0.10    0.001* 

0.38  <0.0001* 

0.16 <0.0001* 
0.12   0.541 

0.16 <0.0001* 

0.19    0.001* 

4&5 F 

        p 

-0.09 <0.0001* 

0.30   0.010* 

0.21   <0.0001* 

0.41   <0.0001* 

0.59  <0.0001* 

-0.01    0.087 

0.05  <0.0001* 

0.18    0.226 
-0.02<0.0001* 
0.04   0.184 

0.61 <0.0001* 

0.23    0.042* 

 
Note: F

*
 ( Feed water ) and P

**
 ( Permeate water )         

 
From Table 5.15 the results show that high significant differences in the TDS measured 

values among all plants, but significant differences were recorded for chloride, hardness, 

nitrate, calcium and magnesium. For chloride no significant differences is found at Al-

Salam (Rafah) & Hanneaf (Gaza) and Al-Sharqia (Khan-Younis) & Hanneaf plants in feed 
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water samples. For hardness no significant differences is found at Al-Sharqia & Al-

Radwan, Al-Balad (Deir-Al_Balah) & Al-Radwan and Hanneaf & Al-Radwan for 

permeate water samples and Al-Balad (Deir-Al_Balah) & Hanneaf plants for feed water 

samples. No significant differences found at Al-Salam & Al-Radwan and Hanneaf & Al-

Radwan plants in permeate water samples for nitrate measured values. In calcium 

measured values no significant differences found to be at Al-Balad (Deir-Al_Balah) & 

Hanneaf, Al-Balad (Deir-Al_Balah) & Al-Radwan and Hanneaf & Al-Radwan plants for 

permeate water samples. In addition results showed that there is no significant in 

magnesium measured values among Al-Salam & Al-Sharqia, Al-Salam & Al-Radwan, Al-

Sharqia & Al-Balad (Deir-Al_Balah), Al-Sharqia & Hanneaf and Al-Sharqia & Al-

Radwan plants for permeate water samples and also the results shows that no significance 

in feed water values among Al-Salam & Al-Sharqia and Al-Sharqia & Hanneaf plants. 

These significance differences justify the performance of the water quality monitoring tests 

and prove that there is a real difference between the chosen desalination plants in the Gaza 

strip.  

 

5.2   Developed ANN predictive models 

 

ANN's technique was applied to develop predictive models to predict the performance of 

some selected desalination plants in the Gaza strip through predicting the water quality 

variables. Since the ANN approach will not assume any functional relationship between 

the dependent and independent variables, ANNs are suitable for capturing functional 

relationships between water quality variables in water quality. The ANN used was a fully 

connected feed-forward system RBF and MLP trained with a back-propagation algorithm 

using different techniques. The training and testing of ANN models for the water quality 

parameters prediction are carried out using neural network toolbox in the MATLAB. 

During this research several models have been developed to predict the water quality 

parameters including: permeate flowrate, TDS, Chloride, NO3
- and Mg2+.  These predictive 

models are discussed in detail as follow: 
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5.2.1 Permeate flowrate (PFR) model  

 

Permeate flowrate values are found to be ranged between 5.4 and 60m3/h for training data 

set and ranged between 8.1 and 60m3/h for testing data set. The mean value among all 

desalination plants for both training and testing data sets found to be 26.55m3/h and 

27.51m3/h respectively. The statistical analysis reveals a positive strong correlation 

between permeate flowrate and feed electrical conductivity (EC) for both training and 

testing data sets whereas r values found to be 0.80 and 0.78 respectively. Negative 

correlation found to be between permeate flowrate and feed pressure for both training and 

testing data sets whereas the r values found to be -0.116 and -0.312 respectively. A positive 

moderate correlation is found to be between flowrate and pH for both training and testing 

data sets whereas the r values 0.268 and 0.59 respectively. 

  
In this section we have investigated the ability of MLP and RBF neural networks to predict 

future values (one week a head) of permeate flowrate in the desalination plants of Gaza 

strip for the purpose of performance assessment. The neural network prediction results 

compared with the traditional statistical methods (multiple regression model). To develop 

MLP network several algorithms are used during training session including: Resilient 

back-propagation, Levenberg Marquardt, Variable learning rate back-propagation, BFGS 

Qusai-Newton, Bayesian rule and Gradient descent. The description of the permeate flow-

rate developed network architecture is given in Table 3.1 chapter 3. The trained MLP and 

RBF networks performance is presented in Fig 5.1 and 5.2 respectively. The results of 

developed models during training and testing data sets as well as multiple regression model 

are given in Table 5.16. The parameters (i.e. weights and biases) of both trained MLP and 

RBF networks are given in annex 2.1. The results obtained from MLP used six different 

algorithms showed that the developed MLP network trained with back-propagation 

incorporated with LM algorithm is the most appropriate model for predicting permeate 

flow rate in the desalination plants of Gaza strip. There are many statistical tools for model 

validation, but the primary tools for most process modelling applications include MSE, 

correlation coefficient, standard error, standard deviation and error percentage. The 

performance of the developed ANN models obtained after training the data sets was tested 

using unknown data set. MSE, MAE, correlation coefficient, standard error and standard 

deviation tools are used for the models validation. 
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Fig.5.1: Permeate flowrate MLP Training Model performance 

 

Fig.5.2: Permeate flowrate RBF Training Model performance 

 
It can be seen from figures 5.1& 5.2 that the MLP network performance is slightly better 

than the RBF network. Also this result illustrated in Table-5.16 that shows the coefficient 

correlations between the predicted values of permeate flowrate using MLP, RBF and MLR 

for testing the developed model. The correlations between the predicted flowrate and 

actual values for MLP, RBF model testing is found to be strong and better than MLR 

model whereas coefficients correlation values are 0.9904, 0.9853 and 0.8976 respectively 

see (Figs.5.3, 5.6 and 5.9). The results obtained prove that the developed MLP and RBF 

neural network models are more accurate than MLR for predicting flowrate of product 

water in the desalination plants of the Gaza strip. The methodology used for the 
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development of MLP and RBF predictive models may be extended to other water quality 

parameters belonging to underground water. 

 
Table 5.16: Summary of developed ANN models and MLR results for predicting PFR 

Models Data set MSE R S.D MAE S.E Error Range 

(m
3
/h) 

MLP 
Training 

Testing 

3.7004 

9.5218 

0.9941 

0.9904 

17.78 

18.60 

1.3644 

1.9145 

1.90 

3.23 

0.001-6.53 

0.061-8.91 

RBF 
Training 

Testing 

07.9713 

12.6450 

0.9873 

0.9853 

17.66 

18.59 

1.9170 

2.4382 

1.89 

3.23 

0.017-8.85 

0.026-9.81 

MLR 
Training 

Testing 

60.8297 

82-6492 

0.9081 

0.8976 

15.99 

18.03 

6.1412 

6.6217 

1.71 

3.13 

0.08-23.05 

0.04-22.68 

 

 
 

Fig.5.3: Permeate flowrate MLP Model regression for training and testing data sets 
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Fig.5.4: Comparison of permeate flowrate MLP Model-Training prediction results 

 

  

 
 

Fig.5.5: Comparison of permeate flowrate MLP Model-Testing prediction results 
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Fig. 5.6: Permeate flowrate RBF Model regression for training and testing data sets 

 

 
 

Fig. 5.7: Comparison of permeate flowrate RBF Model-Training prediction results 
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Fig. 5.8: Comparison of permeate flowrate RBF Model-Testing prediction results  

 

 
 

Fig. 5.9: Permeate flowrate MLR Model regression for training and testing data sets 
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Fig.5.10: Comparison of permeate flowrate MLR Model-Training prediction results 

 

 

 

Fig.5.11: Comparison of permeate flowrate MLR Model-Testing prediction results 

 
Figures 5.4 and 5.5 illustrate the comparison between permeate flowrate actual and 

predicted values of training and testing MLP model prediction results respectively. Figures 

5.7 and 5.8 show the comparison between actual and predicted values of both training and 

testing data sets RBF predictive model results. The comparison results between permeate 

flowrate actual and predicted values for training and testing data sets of MLR statistical 

model are presented in Figs 5.10 and 5.11. 
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Fig.5.12: Comparison of flowrate MLP, RBF&MLR Model-Testing prediction results 

 

Figure 5.12 presents comparison of MLP and RBF model prediction results with the 

conventional method predictions. From the above figure it can be understood that ANN 

predictions are better than conventional methods.  

 

5.2.2 Total dissolved solids (TDS) model 
 
Increased feed TDS or salt concentrations will decrease permeate flowrate and increase salt 

passage. This can also be a clue to surface coating or fouling by the salt. The TDS and EC 

are mostly affected by the feed composition of the impurities such as NaCl and applied 

pressure. Increasing the pressure will cause increase in the TDS and the EC rejection 

percentages (Righton, 2009).  Total dissolved solids (TDS) values are ranged from 10 mg/l 

to 430 mg/l for training data set and from 11.8 mg/l to 340 mg/l for testing data set. The 

mean value among all desalination plants for both training and testing data sets is 146.01 

mg/l and 106.04 mg/l respectively. The statistical analysis showed a positive very strong 

correlation between permeate TDS and permeate conductivity (EC) for both training and 

testing data sets whereas r values found to be 0.99 for both of them. Negative strong 

correlation found to be between TDS and feed pressure for both training and testing data 

sets whereas the r values found to be -0.77 and -0.71 respectively. A positive moderate 

correlation is found to be between TDS and pH for both training and testing data sets 

whereas the r values 0.59 and 0.42 respectively.  
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The correlation between TDS and permeate temperature is found to be positive and 

moderate for both training and testing data sets whereas the r values are 0.34 and 0.56 

respectively.   

  
To predict the future values (one week a head) of TDS concentrations in the desalination 

plants of the Gaza strip, feedforward MLP and RBF neural networks are employed. To 

create MLP network a number of algorithms are used in the training process including: 

Resilient back-propagation, Levenberg Marquardt, Variable learning rate back-

propagation, BFGS Qusai-Newton, Bayesian rule and Gradient descent. The details of the 

TDS created network architecture are given in Table 3.1 chapter-3. The MLP and RBF 

neural network prediction results compared with the traditional statistical methods 

(multiple regression model). The trained MLP and RBF networks performance is presented 

in Fig 5.13 and 5.14 respectively. The summary of developed models results for training 

and testing data sets as well as multiple regression model are given in Table 5.17. The 

parameters (i.e. weights and biases) of both trained MLP and RBF networks are given in 

annex 2.2. The results obtained from MLP used several different algorithms revealed that 

the created MLP network which trained with back-propagation incorporated with LM 

algorithm is the most fitting model for predicting permeate TDS in the desalination plants 

of Gaza strip. 

 
It can be seen from figures 5.13& 5.14 that the created RBF network performance is 

mostly similar to the MLP network. It is also understood from the results tabulated in 

Table 5.17 which show the coefficient correlations between the observed and predicted 

values of TDS using MLP, RBF and MLR for training and testing the developed models. 
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Fig.5.13: Permeate TDS MLP Training Model performance 

 

 
 

Fig.5.14: Permeate TDS RBF Training Model performance 
 

Table 5.17: Summary of developed ANN models and MLR results for predicting TDS 

Models Data set 

 

MSE 

 

R S.D MAE S.E 
Error Range 

(mg/l) 

MLP 
Training 

Testing 

0.0227 

0.0233 

1 

1 

127.01 

91.92 

0.0994 

0.1028 

13.70 

16 

0.0010-0.5285 

0.0026-0.5079 

RBF 
Training 

Testing 

0.0072 

0.0810 

1 

1 

127.81 

91.89 

0.0585 

0.1761 

13.70 

15.99 

0.0008-0.2467 

0.0057-0.9346 

MLR 
Training 

Testing 

0.0260 

1.2810 

1 

0.9999 

127.81 

91.88 

0.1153 

1.0885 

13.70 

15.99 

0.0051-0.5860 

0.0090-1.5871 
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The correlations between the predicted TDS and actual values for MLP, RBF model 

training and testing is found to be very strong and slightly better than MLR  model whereas 

coefficients correlation values are [1-1], [1-1] and [1-0.9999] respectively see (Figs.5.15, 

5.16 and 5.17).  

 
 

Fig 5.15: TDS MLP Model regression for training and testing data sets 

 

 
 

Fig.5.16: TDS RBF Model regression for training and testing data sets  
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The MLP and RBF networks and MLR performances have been tested with different data 

sets and the obtained results show very good performance. The results obtained prove that 

the developed RBF, MLP (neural network models) and MLR have high capability and 

accuracy in predicting TDS concentrations in the water quality of Gaza strip desalination 

plants. 

 

 
 

Fig.5.17: TDS MLR Model regression for training and testing data sets 

  

  
Fig.5.18: Comparison of TDS MLP, RBF&MLR Model-Testing prediction results 

 
Figure 5.18 shows comparisons of MLP and RBF model prediction results with the 

conventional method predictions. From the above figure it can be understood that the 

performances of ANN models and conventional models for predicting TDS concentrations 
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are almost same. This good prediction result obtained from the ANN and MLR models is 

due to the strong correlation between the selected input and output data.  As a first case 

study for desalination plants TDS content modelling, the prediction results prove that the 

artificial neural networks and multiple linear regression models are suitable and robust for 

modelling the TDS level in the desalination plants water quality of Gaza strip.  

 

5.2.3 Chloride model 
 
Chlorides concentrations are ranged from 10.72 mg/l to 153.654 mg/l for training data set 

and from 10.826 mg/l to 121.898 mg/l for testing data set. The mean values for both 

training and testing data sets are found to be 61.56 mg/l and 48.62 mg/l respectively. The 

statistical analysis revealed a positive strong correlation between chloride and conductivity 

(EC) for both training and testing data sets whereas r values found to be 0.985 and 0.983 

respectively. Negative strong correlation found to be between chlorides and pressure for 

both training and testing data sets whereas the r values found to be -0.819 and -0.753 

respectively. A positive moderate correlation is found to be between chloride and 

temperature for both training and testing data sets whereas the r values 0.38 and 0.54 

respectively. The correlation between Cl- and pH is found to be positive and moderate for 

both training and testing data sets whereas the r values are 0.61 and 0.40 respectively.    

 
For predicting the future concentration (one week a head) of chlorides in the product water 

quality of the Gaza strip desalination plants, feedforward MLP and RBF neural networks 

are employed. To develop MLP network several algorithms are used during training 

process including: Resilient back-propagation, Levenberg Marquardt, Variable learning 

rate back-propagation, BFGS Qusai-Newton, Bayesian rule and Gradient descent. Details 

of the developed neural network architectures are presented in Table.3.1 chapter-3. The 

MLP and RBF neural network prediction results are compared with the multiple regression 

model prediction results. The trained MLP and RBF networks performance is shown in Fig 

5.19 and 5.20 respectively. The summary of developed models results for training and 

testing data sets as well as multiple regression model are presented in Table 5.18. The 

parameters (i.e. weights and biases) of both trained MLP and RBF networks are given in 

annex 2.3. The results obtained from MLP trained with several different algorithms 

showed that the developed MLP network trained with back-propagation incorporated with 
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LM algorithm is the most appropriate and fitting model to predict chlorides level in the 

water quality of desalination plants in the Gaza strip. 

 

 

Fig.5.19: Product Chloride MLP Training Model performance 

 

 
 

Fig.5.20: Product Chloride RBF Training Model performance 
 
It can be seen from figures 5.19& 5.20 that the trained RBF network performance is 

slightly better than MLP network. It is also understood from the results tabulated in Table-

5.18 which shows the coefficient correlations, performance (MSE), MAE and error range 

between the observed and predicted values of Cl- using both MLP, RBF and MLR for 

training and testing the developed models. 
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Fig 5.21: Chlorides MLP Model regression for training and testing data sets 

 

 
 

Fig 5.22:  Chlorides RBF Model regression for training and testing data sets 

 

The MLP and RBF networks and MLR performances have been validated with different 

data sets and the prediction results showed very good performance. The correlations 

between the actual and predicted values of chlorides for MLP, RBF model training and 

testing is found to be strong and slightly better than MLR  model whereas coefficients 

correlation values are [0.9983-0.9955], [0.99856-0.98995] and [0.99122-0.98563] 

respectively see (Figs.5.21, 5.22 and 5.23).  
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The results achieved prove that the developed RBF, MLP (neural network models) and 

MLR have good competency and precision in predicting chlorides level in the water 

quality of Gaza strip desalination plants.  

 
Table 5.18: Summary of developed ANN models and MLR results for predicting Chlorides 

Models Data set 

 

MSE 

 

R S.D MAE S.E 
Error Range 

 (mg/l) 

MLP 
Training 

Testing 

5.9354 

8.5300 

0.99827 

0.99550 

41.60 

31.53 

1.9374 

2.3394 

4.46 

5.48 

0.0231-6.4325 

0.0064-6.9426 

RBF 
Training 

Testing 

04.9346 

20.3903 

0.99856 

0.98995 

41.61 

30.99 

1.7557 

3.0506 

4.46 

5.39 

0.0241-6.4325 

0.0446-11.125 

MLR 
Training 

Testing 

30.0259 

27.8076 

0.99122 

0.98563 

41.31 

30.24 

4.2918 

4.1225 

4.42 

5.26 

0.2420-19.668 

0.2770-11.781 

 

 

 
 

Fig 5.23:  Chlorides MLR Model regression for training and testing data sets 
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Fig 5.24: Comparison of Chloride MLP, RBF&MLR Model-Training prediction 

results 

 

 
 

Fig 5.25: Comparison of Chloride MLP, RBF&MLR Model-Testing prediction 

results 

 

Figures 5.24 and 5.25 show comparisons of MLP and RBF model predictions result of 

training and testing data sets with the MLR model predictions. From both figures it can be 

seen that the performances of ANN models are slightly better than MLR model for 

predicting chlorides level. This good predictions result obtained from the ANN and MLR 

models is due to the strong and moderate correlation between the selected input and output 

data.  The good prediction results prove that the proposed approach is capable and suitable 

for modelling Cl- in the water quality of desalination plants in the Gaza strip.   
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5.2.4 Nitrate model  

 

Nitrate concentration in groundwater is a major problem in particular agricultural areas. 

Nitrates, being enormously soluble in water, move certainly through the soil and into the 

groundwater. Digestion of extreme amounts of nitrates causes ill health effects in infants 

less than six months old and vulnerable adults. It causes “blue baby syndrome” or 

Methemoglobinemia in infants, which can lead to brain damage and sometimes death 

(Ramasamy, et al. 2003). The objective of this section is to predict nitrate concentration in 

water quality of the desalination plants in the Gaza strip using neural networks and 

compare the prediction results with multiple regression model. In this study, we assumed 

that nitrate concentration in water quality depends on EC, pressure, pH and temperature of 

the product water.  

 
Nitrate concentration NO3

- values are ranged from 2.91 mg/l to 145.81 mg/l for training 

data set and from 3.72 mg/l to 141.92 mg/l for testing data set. The mean value among the 

selected five desalination plants for both training and testing data sets is 38.61 mg/l and 

24.52 mg/l respectively. The statistical analysis revealed a positive strong correlation 

between NO3
- and electrical conductivity (EC) for both training and testing data sets 

whereas r values found to be 0.94 and 0.91 respectively. Moderate negative correlation 

found to be between NO3
- and pressure for both training and testing data sets whereas the r 

values found to be -0.64 and -0.53 respectively. A positive close to moderate correlation is 

found to be between NO3
- and pH for both training and testing data sets whereas the r 

values 0.51 and 0.34 respectively. The correlation between NO3
- and temperature is found 

to be positive and close to moderate for both training and testing data sets whereas the r 

values are 0.27 and 0.49 respectively.   

 
For NO3

- ANN model training and testing purpose, 87 observations (72 % of the data set) 

were used for training and 33 observations (28% of the data set) were used for testing the 

model performance. To predict the level of nitrates in water quality the feedforward MLP 

and RBF neural networks are employed. Then MLP and RBF neural network prediction 

results compared with the traditional statistical method (multiple regression model). The 

trained MLP and RBF networks performance is presented in Fig 5.26 and 5.27 

respectively. The mean squared error (MSE) and mean absolute error (MAE) are 
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calculated for the testing data set and then compared with the mean squared error of the 

training data set. The mean squared error, MAE, correlation coefficients, standard 

deviation, standard error and errors range for both the training and testing data sets are 

shown in Table 5.19. The mean squared for the testing data set found to closer to that of 

the training data set, implying that the predictions are similar for both the testing data set 

and the training data set. A paired t-test was done to check if any statistically significant 

difference existed between the actual NO3
- and predicted NO3

- for the validation data set. 

The probability of the calculated t-value and p-value for MLP, RBF and MLR training and 

testing data sets found to be [0.000005-0.057], [0.5-0.47709] and [0.001547-0.0272], 

[0.49938-0.489] and [0.000003-0.1763], [0.5-0.4302] respectively. Thus, no statistically 

significant difference exists at 0.05 confidence intervals between the actual NO3
- and 

predicted NO3
- for the testing data set of both MLP and RBF developed models.  

 
The parameters (i.e. weights and biases) of both trained MLP and RBF networks are given 

in annex 2.4.  The prediction results achieved by MLP used several different algorithms 

revealed that the developed MLP network which trained with back-propagation 

incorporated with LM algorithm is the most fitting model for predicting nitrate 

concentrations in the product water quality of desalination plants in the Gaza strip. 

 

 

Fig.5.26: Product Nitrates MLP Training Model performance 
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Fig.5.27: Product Nitrates RBF Training Model performance 
 

Table 5.19: Summary of developed ANN models and MLR results for predicting Nitrates 

Models Data set 

 

MSE 

 

R S.D MAE S.E 
Error Range 

(mg/l) 

MLP 
Training 

Testing 

22.4116 

27.7861 

0.99552 

0.98972 

50.11 

37.15 

2.8759 

3.4713 

5.37 

6.46 

0.0356-16.025 

0.0831-15.373 

RBF 
Training 

Testing 

01.9113 

17.6708 

0.99962 

0.99511 

50.31 

34.77 

1.0118 

2.7143 

5.39 

6.05 

0.0286-06.2404 

0.1064-13.4489 

MLR 
Training 

Testing 

226.5559 

173.9108 

0.95370 

0.93386 

48.00 

33.90 

12.242 

11.159 

5.15 

5.90 

0.3977-40.4387 

0.9208-29.2750 

 

 
 

Fig.5.28: Nitrates MLP Model regression for training and testing data sets 
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Fig.5.29: Nitrates RBF Model regression for training and testing data sets 

 

  
Fig.5.30: Nitrates MLR Model regression for training and testing data sets 

 

The MLP and RBF networks performances have been tested with different data sets and 

the prediction results showed good performance. The correlations between the actual and 

predicted values of NO3
- for MLP and RBF model training and testing is found to be strong 

and better than MLR  model whereas coefficients correlation values are [0.99552-

0.98972], [0.99962-0.99511] and [0.9537-0.93386] respectively see (Figs.5.28, 5.29 and 

5.30). The prediction results of RBF model found to be slightly better than MLP in both 

training and testing data sets. The multiple linear regression statistical models could not 

predict about 20% of nitrate values in both training and testing data sets as several values 
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obtained negatively. The achieved results demonstrate that the developed RBF and MLP 

(neural network models) have good capability and better than MLR in predicting nitrates 

level in the product of water quality in the desalination plants of Gaza strip.  

 

 
 

Fig 5.31: Comparison of Nitrates MLP, RBF&MLR Models-Training prediction 

results 

 

  
Fig 5.32: Comparison of Nitrates MLP, RBF&MLR Models-Testing prediction 

results 

 

The prediction results of MLP and RBF models have been compared with statistical  model 

by means of linear regression method in Minitab software and found that ANN predictions 

are better than conventional methods (Figs 5.31 and 5.32). From both figures it can be seen 
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that the performances of ANN models are better than MLR model for predicting nitrates 

level. The good prediction results prove that the proposed approach is capable for 

modelling NO3
- in the water quality of desalination plants in the Gaza strip. 

 
5.2.5 Magnesium model 

 

Based on the poor quality of what comes out of the municipal tap, health-conscious people 

often rely on bottled or home-filtered water for their drinking needs. While most 

desalinated, filtered and bottled waters are free of cancer-causing pollutants, they supply 

little or no magnesium. Even most tap water is bare of this very important mineral. The 

inferences of this prevalent magnesium deficiency are alarming, in as much as populations 

with low magnesium contented in drinking water show increased rates of sudden death. 

Magnesium plays hundreds of vital roles in the body, including: suppressing unstable heart 

rhythms, controlling blood pressure, maintaining insulin sensitivity, and regulating over 

300 enzymes. Achieving best magnesium levels is an entire requirement for worthy health 

(Davis, 2007). 

 

Magnesium (Mg2+) values are ranged from 0.478 mg/l to 5.782 mg/l for training data set 

and from 0.1608 mg/l to 3.865 mg/l for testing data set. The mean value among all 

desalination plants for both training and testing data sets is 1.89 mg/l and 1.95 mg/l 

respectively. The statistical analysis showed a negative moderate correlation between Mg2+ 

and pressure whereas r values found to be (-0.29 & -0.38). A positive weak correlation 

observed between magnesium and chloride as well as conductivity for both training data 

and testing data sets whereas r values are found to be (0.31-0.34) and (0.29-0.29) 

respectively.  

  
For predicting one week ahead Mg2+ concentrations in the desalination plants of the Gaza 

strip, feedforward MLP and RBF neural networks are employed. For constructing MLP 

network a number of algorithms are investigated during training process including: 

Resilient back-propagation, Levenberg Marquardt, Variable learning rate back-

propagation, BFGS Qusai-Newton, Bayesian rule and Gradient descent. The methodology 

of Mg2+constructed network architecture is given in Table 3.1 chapter-3. The results 

obtained from MLP trained with several different algorithms showed that the constructed 

MLP network which trained with back-propagation incorporated with LM algorithm is the 
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most fitting model for predicting Mg2+ concentrations in the water quality of desalination 

plants in the Gaza strip. The MLP and RBF neural network prediction results were 

compared with the multiple linear regression model. The trained MLP and RBF networks 

performance is presented in Fig 5.33 and 5.34 respectively. The prediction results for ANN 

training and testing data sets as well as multiple linear regression model are given in Table 

5.20. The parameters (i.e. weights and biases) of both trained MLP and RBF networks are 

given in annex 2.5.  

 

 

Fig.5.33: Product Magnesium MLP Training Model performance 

 

 

Fig.5.34: Product Magnesium RBF Training Model performance 
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It can be seen from figures 5.33& 5.34 that the constructed MLP network performance is 

slightly better than RBF network. Also it can be understood from the results shown in 

Table 5.20 which presents the coefficient correlations between the observed and predicted 

values of Mg2+ using MLP and RBF as well as MLR for training and testing created 

models. 

 

Fig.5.35: Magnesium MLP Model regression for training and testing data sets 

 

 

Fig.5.36: Magnesium RBF Model regression for training and testing data sets 
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Fig.5.37: Magnesium MLR Model regression for training and testing data sets 

 

Table 5.20: Summary of ANN models and MLR prediction results  for Magnesium 

Models Data set 

 

MSE 

 

R S.D S.E MAE 
Error Range 

(mg/l) 

MLP 
Training 

Testing 

0.2271 

0.3323 

0.83015 

0.82533 

0.7068 

0.5245 

0.0745 

0.0957 

0.3833 

0.4759 

0.0012-1.193 

0.0132-1.155 

RBF 
Training 

Testing 

0.2437 

0.4639 

0.81653 

0.68337 

0.7017 

0.7541 

0.0773 

0.1376 

0.3871 

0.5407 

0.0034-1.579 

0.0003-1.411 

MLR 
Training 

Testing 

0.6666 

0.6962 

0.44202 

0.41270 

0.2920 

0.2735 

0.0309 

0.0499 

0.5658 

0.6424 

0.0048-3.228 

0.0249-1.753 

 

The MLP and RBF networks performances have been validated with different unknown 

data sets and the prediction results showed acceptable performance as compared to the 

other developed models mentioned earlier. The correlations between the actual and 

predicted values of Mg2+for MLP and RBF model training data set are found to be strong, 

and found to be strong for MLP model testing data set while found to be moderate for RBF 

model testing data set. Prediction results are also found to be better than MLR model 

whereas coefficients correlation values are [0.83015-0.82533], [0.81653-0.68337] and 

[0.44202-0.41270] respectively see (Figs.5.35, 5.36 and 5.37).  

 
The prediction results of MLP model found to be slightly better than RBF in both training 

and testing data sets. The multiple linear regression statistical model could not predict 
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about 30-50% of Mg2+values in both training and testing data sets respectively. The 

achieved results demonstrate that the developed MLP and RBF (neural network models) 

have acceptable capability and better than MLR in predicting magnesium concentrations 

present in the product water of desalination plants in the Gaza strip.  

 

 

Fig 5.38: Comparison of Mg
2+

 MLP, RBF&MLR Models-Training prediction results 

 

 

 

Fig 5.39: Comparison of Mg
2+

 MLP, RBF&MLR Models-Testing prediction results 

 

Figures 5.38 and 5.39 show comparisons of MLP and RBF model predictions result of 

training and testing data sets with the MLR model predictions. From both figures it can be 

seen that the performances of ANN models are better than MLR model for predicting 

magnesium concentrations. As compared with the flowrate, TDS and chloride developed 
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models Mg2+ model showed deprived prediction results. This is may be due to the weak 

correlation coefficients between the selected input and output data. Further improvement 

can be made to upgrade the performance of ANN and MLR for predicting Mg2+ level. This 

could be improved with selection of more appropriate water quality parameters.  

 

5.2.6 ANN developed models verification   

 
The training, testing and verification of ANN developed models for the desalinated water 

quality parameters prediction are carried out using neural network toolbox in the 

MATLAB. During this research five ANN models were developed to predict the 

performance of desalination plants in the Gaza strip including: permeate flowrate, TDS, 

chloride, nitrate and magnesium. All five developed models are discussed above in detail.  

 
The performance of these developed ANN models obtained after training and testing is 

required to be verified by using other unknown data set. However, the required data for 

developed models verification purpose is collected from other four different desalination 

plants located in Gaza strip governorates. For verification purpose the MLP parameters 

(i.e. weights and biases) of the earlier developed ANN models are used to predict water 

quality parameters including: permeate flowrate, TDS, chloride, nitrate and magnesium for 

testing developed models performance.    

 
The ANN developed models verification prediction results are tabulated in Table 5.21.The 

results showed that the ANN developed models have good capability and accuracy in 

predicting the performance of desalination plants in the Gaza strip. As a first case study for 

Gaza desalination plants performance modelling, the prediction results prove that the 

artificial neural network is suitable and capable for modelling the water quality in the 

desalination plants. Further improvement can be made to upgrade the performance of the 

network and increase the accuracy of prediction results. This can be done by adding more 

water quality parameters in the input data and increase the training data set size.  
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Table 5.21: The developed ANN models verification prediction results 
  

ANN Models 

 

Observed     Predicted 

 

ANN Models 

 

Observed      Predicted 

 

Permeate 

Flowrate 

 
20.0000         23.4028 
08.4000         09.2535 
08.3000         09.2712 
50.0000         49.9817 

TDS 

 
145.700          134.452 
11.7430          10.6547 
11.4510          10.4897 
64.7000          59.8663 

Chloride 

 
46.9810         49.6287 
17.8660         16.3516 
17.8670         15.1262 
84.9590         82.9987 

Nitrate 

 
08.1840          07.5160 
05.4270          04.2814 
07.0630          10.8693 
21.3880          17.7467 

Magnesium 

 
1.4570           1.4706 
0.9770           1.0626 
1.9560           1.3916 
3.8650           4.2540 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

 

In this work the assessment of feed and permeate water quality of five selected desalination 

plants in the Gaza strip was studied for understanding the current status of desalination 

plants performance and their environmental impacts. During this study the application of 

ANN approach was performed successfully for predicting various environmental 

parameters including: permeate flowrate, TDS, Cl-, NO3
-
 and Mg2+. The developed models 

can be used for quick assessment of desalination plants performance for the management 

purpose. Also the models can be used for filling the gap of missing data in the database 

system. The following conclusions are prepared based on the analysis of this research work 

obtained results.   

 

6.1 CONCLUSIONS 

 

� Clearly, desalination of brackish water and seawater is a necessary alternative in 

the Gaza strip. Correlating with other desalination technology, it seems that RO is 

the best choice in terms of quality of produced water or the cost of treatment. 

However, the impact of these plants is not well investigated. Desalination has 

different effects including environmental, social, and economic. Because of the 

Israeli siege on the Gaza strip, looking for new sources of energy to be utilized for 

desalination purpose is very important to establish an autonomous source of 

electricity. Even though RO is auspicious technology, it needs highly professional 

people to operate and control the desalination facilities. Therefore, may be the 

membranes need replacing very often which is costly. Also a supply of chemicals 

needed for desalination process should be secured so as to ensure continuous 

operation of the facility. The environmental issue should be studied well before 

implementing the regional desalination plant if it is proposed. The PWA should 

strictly control the private sector that builds desalination units for commercial 

purposes to ensure that they consider environmental aspects. Presently, the brine of 

these inland units is disposed in the field or in the surrounding environment.  
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� An effort to evaluate and investigate performance of desalination plants in the Gaza 

strip in terms of feed and permeate quality and operational conditions was made. 

Operationally, all selected plants were found to have almost similar performance 

except for some slight differences in terms of capacity of desalinated water. From a 

quality point of view, turbidity, pH (except all plants in terms of permeate water), 

hardness and calcium (except for plants Deir-Al_Balah & Hanneaf in case of 

hardness and calcium for feed water) concentration levels for feed and permeate of 

all plants were found to be within WHO and Palestinian drinking water standards 

whereas nitrate concentration levels were found to be exceeding the maximum 

concentrations allowed by WHO and Palestinian standards for all plant feed. The 

chloride, TDS and conductivity concentrations of all plant feeds were higher than 

the WHO and Palestinian standards but the permeate water was found to be in 

compliance with those standards significantly. However, magnesium 

concentrations for the feeds and permeate of all plants (except for Deir-Al_Balah 

plant in terms of feed water and Hanneaf plant which found to be higher than the 

allowed concentrations in WHO in case of feed water ) were found to be complying 

only with Palestinian standards. Generally, all plants are normally performing but 

the need to improve and increase their production without increasing their water 

resource abstraction and energy consumption is essential to meet the water demand 

of the Gaza strip inhabitants. In addition, pre-treatment of feed water with the 

application of some new technologies may significantly improve plant performance 

and potentially increase their water production. 

  
� Initially, MLP and RBF neural networks were successfully developed to predict the 

one week ahead values of permeate flowrate, TDS, chlorides and nitrate in Gaza 

strip desalination plants. It was found that the MLP predictive model was slightly 

better than RBF models. The models were developed based on the data collected 

from five desalination plants in the Gaza strip. Another predictive MLP and RBF 

model was trained to predict magnesium concentration. In comparison with the 

flowrate, TDS, chloride and nitrate developed models; Mg2+ predictive model 

showed less accuracy prediction results. The developed models were compared 

with statistical models and it was found that the prediction results of ANN were 
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better than the conventional methods.  

� The developed ANN models in this study may be used as a new predictive tool to 

improve the performance and management practices of desalination plants in the 

Gaza strip. 

 

6.2 SUGGESTIONS AND RECOMMENDATIONS   

 
� It is suggested that generated saline water from desalination plants should be 

properly disposal under the control of PWA. In addition the quality of permeate 

water should be also monitored regularly to ensure that it meets health 

requirements.  

  
� An important issue is the pumping of brackish water for desalination purpose from 

the coastal aquifer. It is factual that this water is not drinkable, but it is located in 

layers underneath the underground freshwater. Depletion of these layers of brackish 

water may cause dropping of the water table and intrusion of seawater affecting the 

unsaturated area. Hence, it is recommended that the effect of pumping this brackish 

water should be studied and investigated to prevent such damage to the aquifer. 

 
� The multi criteria method commonly used to evaluate desalination plants 

performance it is recommended to be used as a guiding tool to prioritize the 

application for the improvements and developments of desalination plants 

efficiency. 

  
� New technologies including Nano-filtration membrane (NF) application is 

recommended to be considered and experimentally investigated for measuring the 

possibility of enhancing the performance of the desalination plants and increasing 

production in the near future. In addition, effluent brine treatment technology prior 

to disposal may be studied and recommended. 
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� During this study it was observed that the TDS values of desalinated water in some 

of the selected desalination plants were in very low rate, which indicating that the 

rate of minerals in the water is very small. Hence, it is recommended to mix the 

desalinated water with brackish water by certain proportions that meeting with the 

WHO and Palestinian drinking water quality standard. This is required for 

maintaining access to the healthy water and keeping the level of total dissolved 

solids within the range. 

 

� It was observed that some of the desalination plants (reverse osmosis) equipment's 

are not functioning properly. Therefore, it is recommended to conduct a periodic 

maintenance and cleaning process for all desalination plants in the Gaza strip. 

 

� It is recommended to keep equivalency degree of acid and alkali in the desalinated 

water to maintain a moderate level of pH within the rate presented by the WHO and 

Palestinian drinking water quality standards (6.5-8.5). 

  
� It is suggested to expand the scope of water desalination and constructing drinking 

water networks for distributing desalinated water to a large number of areas in the 

Gaza strip. 

  

� An important issue suggested to be investigated in the future lies in establishing if 

the proposed ANN approach will prove robust and accurate enough even when 

applied to other water quality parameters such as (faecal indicator bacteria etc.). 

    

� Further research efforts are to be suggested and directed towards an improved 

understanding of ANN performance in permeate flowrate, TDS, nitrate pollution 

level and magnesium modelling. 
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� It is suggested to investigate the systematic elimination of input parameters to 

further distinguish between critical and non-critical ANN inputs. 

  

� It is suggested to simulate the desalination plants performance through membrane 

separation. This may be done by using ANN to predict the performance of a single 

unit then predicting a whole desalination plant.  

 

� It is recommended to use ANN to predict the best membrane fabrication or 

membrane modification techniques. 
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ANNEX 1.A FEED WATER QUALITY PARAMETERS  

          Annex 1.1 – A (Al-Salam Plant) 

Date 
Sample 

No. 

Water 

Temp °C 

Pressure 

(bar) 

Flow 

rate 

(m³/hr) 

pH 
EC 

(µs/cm) 

TDS 

(mg/l) 

Turbidity 

(NTU) 

Hardness 

(mg/l) 

Chloride 

(mg/l) 

Calcium 

(mg/) 

Magnesium 

(mg/l) 

Nitrate 

(mg/l) 

18.03.2013 1S 23.6 15.0 75.60 7.83 5180 3210 0.28 384.380 1097.080 59.148 57.405 64.988 

25.03.2013 6S 23.9 15.0 76.80 7.81 5120 3170 0.26 310.596 1097.078 52.958 43.252 55.475 

01.04.2013 11S 24.3 15.0 76.80 7.75 5060 3130 0.29 360.360 1082.640 60.312 50.868 64.033 

08.04.2013 16S 24.3 15.5 72.60 7.82 4960 3070 0.31 360.360 1100.059 58.725 51.832 56.540 

18.04.2013 21S 23.9 15.0 75.00 7.83 4850 3010 0.26 340.560 1079.155 57.138 47.138 53.344 

25.04.2013 26S 23.9 15.0 75.00 7.82 4820 2988 0.24 348.480 1086.302 57.138 49.911 61.139 

29.04.2013 31S 23.9 15.5 78.00 7.8 4790 2970 0.21 356.400 1093.448 57.138 51.834 72.415 

06.05.2013 36S 24.2 15.5 72.00 7.82 4840 3000 0.23 348.480 1107.742 53.964 51.837 64.776 

15.05.2013 41S 23.9 15.5 72.00 7.84 4770 2960 0.23 379.008 1107.742 61.409 54.729 63.228 

22.05.2013 46S 24.3 15.0 72.00 7.69 4750 2940 0.27 374.976 1157.768 61.409 53.751 73.991 

27.05.2013 51S 24.3 15.2 73.20 7.74 4730 2930 0.23 358.848 1150.622 61.409 49.836 62.107 

05.06.2013 56S 24.4 15.5 72.00 7.76 4710 2920 0.23 370.944 1137.718 59.793 53.753 69.731 

10.06.2013 61S 24.4 15.5 72.00 7.78 4700 2910 0.35 358.848 1122.943 59.793 50.816 57.399 

17.06.2013 66S 24.4 15.2 73.20 7.8 4620 2860 0.30 362.880 1130.330 59.793 51.795 68.834 

26.06.2013 71S 24.8 15.0 73.20 7.81 4730 2930 0.29 378.480 1145.106 62.275 54.076 64.798 

01.07.2013 76S 24.6 15.0 75.00 7.72 4950 3070 0.53 378.480 1145.106 60.678 55.045 65.919 

08.07.2013 81S 24.6 15.5 72.00 7.76 4920 3050 1.02 378.480 1137.718 63.871 53.107 73.543 

15.07.2013 86S 24.6 15.5 72.00 7.75 4880 6026 0.62 376.488 1137.720 62.275 53.592 72.197 

22.07.2013 91S 24.5 15.0 72.00 7.73 4840 3000 0.21 374.496 1137.718 60.678 54.078 70.852 

29.07.2013 96S 24.6 15.0 72.00 7.76 4880 2970 0.33 386.448 1115.555 63.871 55.041 76.905 

19.08.2013 101S 24.9 14.0 72.00 7.57 4850 3000 0.23 386.448 1165.809 63.871 55.041 63.228 

27.08.2013 106S 24.5 15.0 78.00 7.77 4800 2980 0.31 382.464 1122.631 62.275 55.043 65.919 

02.09.2013 111S 24.6 15.0 75.00 7.73 4770 2960 0.20 382.464 1137.023 60.678 56.012 59.417 

09.09.2013 116S 24.7 15.0 73.20 7.82 4680 2900 0.24 382.464 1122.631 59.081 56.981 65.471 
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         Annex 1.2-A (Al-Sharqia Plant) 

Date 
Sample 

No. 

Water 

Temp °C 

Pressure 

(bar) 

Flow 

rate 

(m³/hr) 

pH 
EC 

(µs/cm) 

TDS 

(mg/l) 

Turbidity 

(NTU) 

Hardness 

(mg/l) 

Chloride 

(mg/l) 

Calcium 

(mg/) 

Magnesium 

(mg/l) 

Nitrate 

(mg/l) 

18.03.2013 2S 16.2 13.0 22.0 7.00 4400 2730 0.19 317.460 1010.47 43.330 50.760 274.750 

25.03.2013 7S 15.2 12.0 23.0 7.17 4320 2680 0.23 260.832 952.725 39.891 39.103 382.250 

01.04.2013 12S 23.9 12.0 24.0 7.41 4260 2640 0.23 295.020 934.682 52.376 39.825 262.250 

08.04.2013 17S 23.4 11.0 23.0 7.09 4180 2590 0.29 297.000 957.66 49.202 42.232 138.593 

15.04.2013 22S 17.6 13.0 23.0 7.15 4170 2580 0.25 289.080 957.66 49.202 40.309 133.407 

25.04.2013 27S 23.7 12.0 23.0 7.31 4090 2540 0.20 300.960 936.22 44.441 46.082 320.179 

29.04.2013 32S 24.9 12.0 23.0 7.34 4060 2520 0.12 297.000 957.66 46.027 44.158 244.750 

06.05.2013 37S 24.6 13.0 23.0 7.32 4070 2520 0.15 289.080 943.367 46.028 42.235 133.222 

15.05.2013 42S 23.3 12.0 23.0 7.11 3980 2470 0.28 290.304 957.66 45.248 43.006 404.750 

20.05.2013 47S 24.8 13.0 23.0 7.24 3960 2460 0.20 294.336 971.954 46.865 43.003 282.063 

27.05.2013 52S 24.6 13.0 23.0 7.44 3930 2440 0.22 294.336 979.101 45.248 43.984 286.995 

05.06.2013 57S 25.2 13.0 23.0 7.31 3890 2410 0.11 294.336 938.248 45.248 43.984 310.762 

10.06.2013 62S 25.0 12.5 23.0 7.38 3920 2430 0.20 322.560 967.799 46.865 49.854 245.291 

17.06.2013 67S 24.7 11.5 23.0 7.64 3790 2350 0.26 290.304 923.473 46.865 42.025 281.166 

26.06.2013 72S 25.9 13.0 23.0 7.55 3890 2410 0.18 298.800 953.024 46.307 168.055 263.677 

01.07.2013 77S 25.7 11.5 23.0 7.23 4110 2550 0.31 314.736 960.411 47.904 47.324 266.816 

08.07.2013 82S 25.6 11.0 23.0 7.23 4060 2510 0.17 302.784 975.187 47.904 169.995 327.354 

15.07.2013 87S 26.0 12.0 23.0 7.32 4010 2480 0.31 306.768 945.636 44.710 47.328 273.094 

22.07.2013 92S 25.3 11.0 25.4 7.23 4000 2480 0.17 314.736 967.799 46.307 48.293 288.789 

29.07.2013 97S 25.6 11.0 25.4 7.78 3980 2468 0.20 320.712 966.055 47.904 48.775 286.995 

19.08.2013 102S 25.9 11.5 23.0 7.83 3960 2460 0.23 326.688 964.311 49.500 49.256 285.202 

26.08.2013 107S 25.9 12.0 23.0 7.62 3920 2430 0.14 294.816 935.525 43.113 45.397 311.211 

02.09.2013 112S 25.7 11.0 22.0 7.63 3880 2400 0.23 294.816 935.525 44.710 44.427 245.739 

09.09.2013 117S 25.1 11.5 24.0 7.09 3870 2400 0.24 318.720 935.525 47.904 48.291 296.413 
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        Annex 1.3-A (Al-Balad Plant) 

Date 
Sample 

No. 

Water 

Temp °C 

Pressure 

(bar) 

Flow 

rate 

(m³/hr) 

pH 
EC 

(µs/cm) 

TDS 

(mg/l) 

Turbidity 

(NTU) 

Hardness 

(mg/l) 

Chloride 

(mg/l) 

Calcium 

(mg/) 

Magnesium 

(mg/l) 

Nitrate 

(mg/l) 

18.03.2013 3S 23.2 14.5 60.0 7.12 6520 4040 0.16 1177.170 1645.620 162.314 187.230 148.407 

26.03.2013 8S 24.1 14.5 60.0 7.05 6480 4020 0.16 964.390 1652.834 136.866 151.025 132.481 

01.04.2013 13S 23.9 14.5 60.0 7.11 6390 3960 0.16 1096.960 1645.617 161.891 167.046 146.926 

09.04.2013 18S 23.5 14.5 60.0 7.06 6190 3840 0.31 1085.040 1650.892 155.542 168.977 122.852 

15.04.2013 23S 23.4 14.5 66.0 7.12 6900 4280 0.29 1203.840 1879.587 176.175 185.291 116.370 

23.04.2013 28S 22.9 14.5 63.0 7.10 6160 3820 0.17 1092.960 1700.919 165.065 165.121 139.341 

30.04.2013 33S 24.1 14.5 61.2 7.07 6120 3790 0.15 1081.080 1643.745 163.478 163.200 147.678 

06.05.2013 38S 23.6 14.5 76.2 7.09 6120 3800 0.15 1069.200 1622.305 163.478 160.317 144.619 

15.05.2013 43S 23.6 14.5 90.0 7.07 6050 3751 0.15 1080.936 1672.332 160.925 164.714 143.722 

20.05.2013 48S 23.7 14.5 90.0 7.06 5980 3710 0.14 1092.672 1722.359 158.371 169.113 142.601 

27.05.2013 53S 24.1 14.5 90.0 7.03 5920 3670 0.13 1084.608 1693.773 163.218 164.214 147.481 

05.06.2013 58S 24.1 14.5 90.0 7.10 5850 3630 0.18 1088.640 1647.475 163.218 165.193 145.739 

10.60.2013 63S 24.1 14.5 96.0 6.96 5840 3620 0.20 1108.800 1640.087 161.603 171.066 116.367 

17.06.2013 68S 24.0 14.5 62.0 7.00 5910 3670 0.26 1094.688 1699.189 161.603 167.641 128.251 

26.06.2013 73S 24.3 14.5 90.0 7.08 5860 3630 0.20 1107.552 1662.251 166.066 168.055 134.753 

01.07.2013 78S 24.1 14.5 90.0 7.05 6140 3800 0.36 1095.600 1647.475 162.872 167.092 132.735 

08.07.2013 83S 24.4 14.5 90.0 7.03 6100 3780 0.23 1103.568 1640.087 161.275 169.995 144.618 

15.07.2013 88S 26.7 14.5 90.0 7.00 6030 3740 0.16 1119.504 1662.251 164.469 171.925 128.027 

23.07.2013 93S 24.1 14.5 90.0 7.05 5980 3710 0.20 1119.504 1640.087 161.275 173.863 134.753 

29.07.2013 98S 24.2 14.5 88.8 7.00 5940 3680 0.19 1127.470 1654.863 166.066 172.889 154.260 

19.08.2013 103S 24.1 14.5 90.0 7.04 6000 3720 0.20 1123.488 1712.731 174.049 167.079 151.121 

26.08.2013 108S 24.3 14.5 89.4 7.05 5950 3690 0.24 1127.472 1712.731 156.485 178.704 147.982 

03.09.2013 113S 24.1 14.5 90.0 7.08 5880 3650 0.13 1123.488 1655.161 162.872 173.861 125.785 

09.09.2013 118S 23.9 14.5 88.8 7.09 5830 3610 0.29 1131.456 1683.946 166.066 173.857 137.668 
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         Annex 1.4-A (Hanneaf Plant) 

Date 
Sample 

No. 

Water 

Temp °C 

Pressure 

(bar) 

Flow 

rate 

(m³/hr) 

pH 
EC 

(µs/cm) 

TDS 

(mg/l) 

Turbidity 

(NTU) 

Hardness 

(mg/l) 

Chloride 

(mg/l) 

Calcium 

(mg/) 

Magnesium 

(mg/l) 

Nitrate 

(mg/l) 

20.03.2013 4S 22.9 14.0 13.00 7.12 2590 1603 0.19 876.876 656.803 229.030 73.859 168.083 

27.03.2013 9S 23.0 17.5 10.20 7.10 2470 1531 0.26 703.560 649.586 211.834 42.230 128.222 

03.04.2013 14S 22.8 13.0 13.38 7.17 3090 1914 0.45 958.320 879.046 284.103 60.209 194.235 

11.04.2013 19S 22.9 12.5 13.20 7.24 2930 1817 0.32 894.960 807.579 266.640 55.427 197.744 

17.04.2013 24S 23.1 14.0 10.20 7.07 2940 1824 0.32 842.400 850.459 269.820 40.740 122.852 

24.04.2013 29S 23.1 16.3 13.70 7.10 3070 1905 0.25 914.220 889.766 285.691 48.542 139.333 

29.04.2013 34S 23.1 16.3 13.68 7.13 3200 1986 0.18 986.040 929.074 301.562 56.343 177.985 

08.05.2013 39S 23.2 13.5 13.98 7.14 4180 2590 0.23 1255.320 1379.316 358.757 86.997 173.236 

13.05.2013 44S 23.1 15.0 14.28 7.13 3790 2350 0.64 1165.248 1193.502 336.133 78.863 203.940 

21.05.2013 49S 23.2 15.0 14.16 7.12 2950 1827 0.28 955.584 914.780 277.956 63.275 195.488 

29.05.2013 54S 23.2 14.2 14.10 7.13 2800 1734 0.14 967.680 856.982 281.188 64.250 168.170 

03.06.2013 59S 23.3 14.0 14.10 7.17 2900 1798 0.96 963.648 893.921 294.116 162.507 162.406 

12.06.2013 64S 23.2 14.0 14.10 7.08 2680 1662 0.51 899.136 797.880 266.644 56.438 187.969 

18.06.2013 69S 23.4 15.5 14.28 7.17 4080 2530 0.23 1398.384 1411.066 381.632 107.841 153.885 

24.06.2013 74S 23.4 14.5 14.16 7.16 3160 1956 0.26 1051.776 967.799 316.164 63.438 177.193 

02.07.2013 79S 23.4 15.5 13.80 7.01 4850 3010 0.30 1394.400 1566.209 381.632 106.874 163.158 

10.07.2013 84S 23.4 16.5 15.30 7.17 4500 2790 0.23 1286.832 1448.005 356.084 96.267 173.183 

18.07.2013 89S 23.2 16.0 16.08 7.04 2830 1755 0.24 964.128 820.044 284.228 61.543 184.712 

24.07.2013 94S 23.2 16.0 16.08 7.09 2835 1758 0.26 972.096 820.044 285.825 62.508 178.446 

30.07.2013 99S 23.2 16.0 16.08 7.13 2840 1762 0.28 980.064 820.043 287.422 63.473 171.929 

20.08.2013 104S 23.3 16.5 14.40 7.00 4920 3050 0.30 1446.192 1712.731 384.826 117.506 161.905 

27.08.2013 109S 23.3 16.0 15.48 7.17 3400 2110 0.17 1095.600 1065.059 311.374 76.982 176.441 

04.09.2013 114S 23.3 17.0 15.06 7.05 4390 2720 0.20 1326.672 1468.055 365.664 100.124 155.388 

10.09.2013 119S 23.2 17.5 15.12 7.10 4760 2950 0.18 1394.400 1597.589 372.051 112.687 156.892 
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        Annex 1.5-A (Al-Radwan Plant) 

Date 
Sample 

No. 

Water 

Temp °C 

Pressure 

(bar) 

Flow 

rate 

(m³/hr) 

pH 
EC 

(µs/cm) 

TDS 

(mg/l) 

Turbidity 

(NTU) 

Hardness 

(mg/l) 

Chloride 

(mg/l) 

Calcium 

(mg/) 

Magnesium 

(mg/l) 

Nitrate 

(mg/l) 

20.03.2013 5S 22.9 16.0 18.60 7.27 936 580.00 0.31 352.370 132.850 90.124 30.839 125.547 

28.03.2013 10S 22.4 15.5 18.50 7.26 943 585.00 0.27 322.608 129.917 81.844 28.640 124.704 

03.04.2013 15S 22.5 16.0 18.48 7.28 929 576.00 0.19 382.140 135.787 98.404 33.041 142.152 

10.04.2013 20S 21.9 16.0 18.48 7.29 921 571.00 0.32 368.280 128.641 95.230 31.603 117.667 

17.04.2013 25S 21.7 16.0 18.54 7.26 914 567.00 0.24 372.240 121.494 92.055 34.491 125.785 

24.04.2013 30S 21.6 16.0 18.30 7.20 912 565.00 0.30 368.280 128.641 95.230 31.603 138.341 

29.04.2013 35S 24.3 16.0 18.12 7.23 918 569.00 0.20 364.320 128.641 95.230 30.642 128.129 

09.05.2013 40S 22.9 16.5 17.70 7.15 901 558.00 0.48 395.136 135.787 100.193 35.110 131.463 

13.05.2013 45S 22.9 16.5 17.58 7.13 898 557.00 0.47 395.136 128.641 103.425 33.148 126.093 

21.05.2013 50S 23.4 17.5 17.04 7.23 887 550.00 0.43 370.944 142.934 93.729 33.161 142.601 

29.05.2013 55S 23.7 18.0 17.10 7.12 881 547.00 0.53 415.296 140.367 98.577 40.984 115.471 

04.06.2013 60S 24.3 17.7 16.02 7.11 880 546.00 0.67 374.976 132.980 93.729 68.264 128.924 

11.06.2013 65S 24.8 18.0 16.20 7.12 873 541.00 0.70 374.976 147.756 95.345 33.158 136.771 

18.06.2013 70S 25.0 18.5 15.60 7.19 861 534.00 0.67 394.416 132.980 99.001 35.658 140.358 

24.06.2013 75S 25.5 18.5 15.72 7.14 880 563.20 0.70 386.448 140.367 100.597 32.756 124.664 

02.07.2013 80S 25.8 19.5 17.10 7.11 923 590.72 0.54 402.384 140.368 100.597 36.624 125.784 

10.07.2013 85S 24.6 19.0 17.28 7.26 916 568.00 0.58 386.448 132.980 95.807 35.663 138.789 

16.07.2013 90S 25.0 19.0 17.34 7.19 908 563.00 0.47 382.464 140.368 95.807 34.696 113.004 

24.07.2013 95S 23.9 19.5 17.28 7.28 890 552.00 0.26 386.448 132.980 92.614 37.600 125.560 

30.07.2013 100S 25.3 19.5 17.28 7.17 892 553.00 0.23 386.448 132.980 287.422 32.756 122.645 

20.08.2013 105S 24.3 17.5 16.56 7.24 901 559.00 0.41 390.432 143.927 95.807 36.629 125.561 

27.08.2013 110S 24.2 17.5 16.56 7.28 894 554.00 0.19 378.480 143.927 92.614 35.666 127.354 

04.09.2013 115S 24.9 17.5 16.20 7.22 878 545.00 0.38 386.448 143.927 95.807 35.663 121.300 
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ANNEX 1.B PERMEATE WATER QUALITY PARAMETERS 

        Annex 1.1-B (Al-Salam Plant) 

Date 
Sample 

No. 

Water 

Temp °C 

Pressure 

(bar) 

Flow 

rate 

(m³/hr) 

pH 
EC 

(µs/cm) 

TDS 

(mg/l) 

Turbidity 

(NTU) 

Hardness 

(mg/l) 

Chloride 

(mg/l) 

Calcium 

(mg/) 

Magnesium 

(mg/l) 

Nitrate 

(mg/l) 

18.03.2013 1D 24.2 14.0 60.0 6.28 147.60 91.500 0.14 10.290 43.310 1.032 1.871 8.094 

25.03.2013 6D 24.4 14.0 60.0 6.22 145.50 90.200 0.17 8.580 43.305 1.032 1.456 7.040 

01.04.2013 11D 24.7 14.0 60.0 6.19 144.00 89.300 0.18 11.880 43.305 3.174 0.957 7.757 

08.04.2013 16D 24.8 14.0 43.2 6.12 133.50 82.800 0.21 7.920 39.306 1.587 0.959 5.605 

18.04.2013 21D 24.2 14.0 60.0 6.06 145.60 90.300 0.13 11.880 46.454 1.587 1.921 5.314 

25.04.2013 26D 24.2 14.0 51.0 6.12 141.95 88.009 0.12 10.890 44.667 1.587 1.680 7.152 

29.04.2013 31D 24.3 14.0 42.0 6.18 138.30 85.700 0.11 9.900 42.880 1.587 1.440 9.013 

06.05.2013 36D 24.7 14.0 54.0 6.22 138.20 85.700 0.16 11.880 42.880 1.587 1.921 8.139 

15.05.2013 41D 24.1 14.0 48.0 6.15 137.30 85.100 0.17 10.080 46.454 0.808 1.956 7.309 

22.05.2013 46D 24.5 14.0 51.0 6.14 142.00 88.000 0.24 10.080 46.454 0.808 1.956 9.417 

27.05.2013 51D 24.6 14.0 48.0 6.54 142.30 88.200 0.09 10.080 46.454 0.808 1.956 8.184 

05.06.2013 56D 24.7 14.0 39.0 6.28 142.80 88.500 0.15 10.080 48.021 2.424 0.976 8.744 

10.06.2013 61D 24.8 14.0 49.2 6.34 140.80 87.300 0.31 10.080 48.021 2.424 0.976 7.175 

17.06.2013 66D 24.8 14.0 51.0 6.46 140.00 86.800 0.17 10.080 48.021 3.232 0.485 9.036 

26.06.2013 71D 24.9 14.0 50.0 6.47 143.30 88.900 0.20 9.960 48.021 0.798 1.933 7.847 

01.07.2013 76D 24.9 14.0 50.0 6.34 157.50 97.700 0.26 9.960 51.714 1.597 1.448 8.677 

08.07.2013 81D 24.9 14.0 48.0 6.48 153.00 94.900 0.22 9.960 48.021 1.597 1.448 9.641 

15.07.2013 86D 24.9 14.0 48.0 6.36 155.05 96.150 0.22 9.960 49.867 1.597 1.448 9.462 

22.07.2013 91D 24.9 13.5 48.0 6.23 157.10 97.400 0.20 9.960 51.714 1.597 1.448 9.260 

29.07.2013 96D 24.9 13.5 43.2 6.43 158.70 98.400 0.10 11.952 48.020 1.596 1.932 10.358 

19.08.2013 101D 25.4 13.5 36.0 6.34 161.80 100.300 0.13 11.952 51.714 1.597 1.932 8.369 

27.08.2013 106D 24.8 14.0 48.0 6.42 159.70 99.000 0.08 9.960 57.571 1.597 1.448 8.879 

02.09.2013 111D 24.8 14.0 45.0 6.37 158.20 98.100 0.10 11.952 48.021 1.597 1.932 7.825 
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      Annex 1.2-B (Al-Sharqia Plant) 

Date 
Sample 

No. 

Water 

Temp °C 

Pressure 

(bar) 

Flow 

rate 

(m³/hr) 

pH 
EC 

(µs/cm) 

TDS 

(mg/l) 

Turbidity 

(NTU) 

Hardness 

(mg/l) 

Chloride 

(mg/l) 

Calcium 

(mg/) 

Magnesium 

(mg/l) 

Nitrate 

(mg/l) 

18.03.2013 2D 21.9 12.0 17 6.11 635 394 0.18 13.728 129.92 1.375 2.497 143.037 

25.03.2013 7D 22.5 11.0 18 5.96 601 373 0.2 11.154 126.308 2.407 1.247 140.444 

01.04.2013 12D 24.2 10.5 19 5.86 566 351 0.2 15.84 119.091 2.381 2.399 138.220 

08.04.2013 17D 24.1 10.0 18 6.07 693 430 0.18 13.86 146.507 1.587 2.401 124.700 

15.04.2013 22D 22.9 11.5 18 6.27 631 391 0.15 13.86 135.787 1.587 2.401 119.700 

25.04.2013 27D 24.1 11.0 18 6.47 686 425 0.15 15.84 153.654 2.381 2.399 137.668 

29.04.2013 32D 25.3 10.5 18 6.46 679 421 0.09 13.86 146.507 2.381 1.919 145.815 

06.05.2013 37D 24.8 11.5 18 6.35 517 320 0.1 11.88 110.774 2.381 1.438 114.520 

15.05.2013 42D 23.6 10.5 18 5.90 498 309 0.19 12.096 110.774 1.616 1.955 141.741 

20.05.2013 47D 25.1 11.5 18 6.20 501 311 0.19 12.096 117.921 1.616 1.955 122.197 

27.05.2013 52D 24.8 11.0 18 6.36 503 312 0.1 12.096 114.347 1.616 1.955 109.865 

05.06.2013 57D 25.5 11.5 18 6.47 544 337 0.1 12.096 121.898 2.424 1.465 141.928 

10.06.2013 62D 25.4 11.0 18 6.29 485 301 0.15 12.096 107.128 2.424 1.465 99.327 

17.06.2013 67D 25.0 10.2 18 6.02 639 396 0.17 12.096 147.755 3.232 0.975 139.013 

26.06.2013 72D 26.2 11.0 18 6.26 516 320 0.13 11.952 118.204 1.597 2.898 117.713 

01.07.2013 77D 25.9 10.0 18 6.12 548 340 0.15 11.952 121.898 1.597 1.932 120.628 

08.07.2013 82D 26.7 10.0 18 6.33 623 386 0.16 11.952 136.674 2.395 2.413 142.825 

15.07.2013 87D 25.7 11.0 18 6.25 488 302 0.17 13.944 110.817 3.194 1.446 100.448 

22.07.2013 92D 25.7 9.5 19 6.46 479 297 0.09 11.952 107.123 1.597 1.932 112.556 

29.07.2013 97D 25.7 9.5 19 6.67 521 323 0.15 12.948 116.358 1.597 2.174 122.422 

19.08.2013 102D 26.2 10.25 18 6.87 562 348 0.2 13.944 125.592 1.596 2.416 132.287 

26.08.2013 107D 26.2 10.5 18 6.79 578 358 0.1 13.944 125.592 1.597 2.416 144.200 

02.09.2013 112D 25.9 9.5 17 6.86 570 353 0.09 13.944 125.592 2.395 1.931 112.780 
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      Annex 1.3-B (Al-Balad Plant) 

Date 
Sample 

No. 

Water 

Temp °C 

Pressure 

(bar) 

Flow 

rate 

(m³/hr) 

pH 
EC 

(µs/cm) 

TDS 

(mg/l) 

Turbidity 

(NTU) 

Hardness 

(mg/l) 

Chloride 

(mg/l) 

Calcium 

(mg/) 

Magnesium 

(mg/l) 

Nitrate 

(mg/l) 

18.03.2013 3D 23.8 10.9 45 5.64 243 150.66 0.16 17.358 66.763 2.963 2.415 18.251 

26.03.2013 8D 23.9 10.9 48 5.41 248 153.60 0.16 18.876 68.567 2.751 2.912 15.430 

01.04.2013 13D 23.6 10.9 47 5.86 237 147.10 0.15 15.840 64.958 3.174 1.918 16.390 

09.04.2013 18D 23.6 11.2 47 5.33 244 151.60 0.27 17.820 71.467 2.381 2.880 14.977 

15.04.2013 23D 22.5 11.2 42 5.44 243 150.40 0.24 17.820 71.467 2.381 2.880 14.349 

23.04.2013 28D 22.6 10.9 47 5.40 240 149.10 0.11 17.820 71.467 2.381 2.880 11.637 

30.04.2013 33D 24.3 10.9 46 5.90 232 143.70 0.16 21.780 67.894 7.920 0.481 18.161 

06.05.2013 38D 24.0 11.2 47 5.58 241 149.30 0.14 17.820 71.467 3.174 2.399 13.699 

15.05.2013 43D 24.0 10.9 48 5.95 246 152.60 0.14 18.990 75.041 2.799 2.911 15.022 

20.05.2013 48D 24.1 10.9 47 6.32 251 155.80 0.13 20.160 78.614 2.424 3.422 16.345 

27.05.2013 53D 24.2 11.0 49 6.18 232 144.00 0.08 18.144 67.894 2.424 2.933 16.390 

05.06.2013 58D 24.4 10.9 49 5.98 239 148.00 0.11 20.160 73.878 3.232 2.932 17.982 

10.60.2013 63D 26.6 11.2 50 5.85 260 161.30 0.12 18.144 77.572 3.232 2.443 16.076 

17.06.2013 68D 24.6 10.9 49 5.67 238 147.60 0.17 16.128 73.878 4.040 1.463 18.825 

26.06.2013 73D 24.9 11.0 49 5.79 244 151.30 0.12 17.928 73.878 2.395 2.898 16.704 

01.07.2013 78D 25.1 11.0 49 5.65 259 160.80 0.23 21.912 73.878 2.395 3.865 17.287 

08.07.2013 83D 25.5 10.9 49 6.03 257 159.00 0.12 17.928 73.878 3.194 2.413 19.327 

15.07.2013 88D 26.7 11.0 50 5.94 275 170.70 0.15 19.920 81.266 3.194 2.897 17.713 

23.07.2013 93D 24.7 10.9 48 5.76 248 154.00 0.15 19.920 73.878 2.395 3.382 16.682 

29.07.2013 98D 25.9 11.0 49 5.83 270 167.20 0.14 21.912 77.572 3.194 3.380 20.561 

19.08.2013 103D 25.7 11.0 50 5.74 269 166.80 0.12 23.904 81.265 2.395 4.348 19.910 

26.08.2013 108D 24.9 10.9 48 5.56 256 158.60 0.11 21.912 73.878 2.395 3.865 19.552 

03.09.2013 113D 25.1 14.5 48 5.67 259 160.70 0.09 19.920 40.633 3.992 2.413 17.152 
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      Annex 1.4-B (Hanneaf Plant) 

Date 
Sample 

No. 

Water 

Temp °C 

Pressure 

(bar) 

Flow 

rate 

(m³/hr) 

pH 
EC 

(µs/cm) 

TDS 

(mg/l) 

Turbidity 

(NTU) 

Hardness 

(mg/l) 

Chloride 

(mg/l) 

Calcium 

(mg/) 

Magnesium 

(mg/l) 

Nitrate 

(mg/l) 

20.03.2013 4D 23.3 12.5 9.6 5.62 51.30 31.800 0.17 11.154 18.044 2.063 1.455 10.269 

27.03.2013 9D 23.4 15.0 5.4 5.49 85.80 53.200 0.2 17.160 28.870 4.126 1.661 10.897 

03.04.2013 14D 23.3 11.5 9.3 5.47 60.70 37.600 0.19 7.920 21.440 2.381 0.478 13.251 

11.04.2013 19D 23.4 11.0 9.3 5.41 57.10 35.400 0.24 9.900 21.440 1.587 1.439 8.274 

17.04.2013 24D 23.5 17.0 5.4 5.65 115.50 71.600 0.21 17.820 35.733 3.967 1.918 11.614 

24.04.2013 29D 23.5 12.0 9.6 5.54 88.10 54.622 0.13 11.880 28.586 3.174 1.678 11.323 

29.04.2013 34D 23.5 12.0 9.6 5.43 60.70 37.600 0.12 11.880 21.440 2.381 1.439 11.031 

08.05.2013 39D 23.6 15.25 9.9 5.45 80.30 49.800 0.15 11.880 28.586 2.424 1.413 12.085 

13.05.2013 44D 23.5 13.5 10.2 5.31 73.40 45.500 0.18 16.128 28.587 4.848 0.973 12.085 

21.05.2013 49D 23.6 12.5 10.2 5.42 56.00 34.700 0.11 10.080 25.013 1.616 1.466 10.605 

29.05.2013 54D 23.6 12.5 10.2 5.60 54.80 34.000 0.14 10.080 22.163 1.616 1.466 10.246 

03.06.2013 59D 23.7 12.5 10.2 5.30 55.30 34.300 0.21 10.080 22.163 2.424 1.858 11.659 

12.06.2013 64D 23.7 12.5 10.2 5.61 52.40 32.500 0.2 10.080 25.857 2.424 0.976 12.152 

18.06.2013 69D 23.8 14.0 10.2 5.70 79.30 49.200 0.14 9.960 29.551 3.194 0.479 10.269 

24.06.2013 74D 23.9 13.0 10.2 5.63 59.50 36.900 0.22 9.960 25.857 1.597 1.448 10.404 

02.07.2013 79D 23.8 14.0 9.72 5.53 96.40 59.800 0.14 11.952 33.245 1.597 1.932 11.457 

10.07.2013 84D 23.7 15.0 11.1 5.61 84.20 52.200 0.18 11.952 29.551 1.597 1.932 11.614 

18.07.2013 89D 23.6 14.0 12.0 5.48 52.30 32.400 0.18 11.952 22.163 3.194 0.963 10.897 

24.07.2013 94D 23.6 14.0 12.0 5.48 53.65 33.250 0.17 11.952 22.163 3.194 0.963 10.403 

30.07.2013 99D 23.6 14.0 12.0 5.48 55.00 34.100 0.16 11.952 22.163 3.194 0.963 9.910 

20.08.2013 104D 23.7 14.5 10.2 5.57 97.90 60.700 0.09 11.952 36.939 1.597 1.932 11.233 

27.08.2013 109D 23.6 14.0 11.4 5.59 62.60 38.800 0.12 11.952 28.785 1.597 1.932 11.211 

04.09.2013 114D 23.6 15.0 10.8 5.59 85.30 52.900 0.16 11.952 33.245 3.194 0.963 10.807 
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      Annex 1.5-B (Al-Radwan Plant) 

Date 
Sample 

No. 

Water 

Temp °C 

Pressure 

(bar) 

Flow 

rate 

(m³/hr) 

pH 
EC 

(µs/cm) 

TDS 

(mg/l) 

Turbidity 

(NTU) 

Hardness 

(mg/l) 

Chloride 

(mg/l) 

Calcium 

(mg/) 

Magnesium 

(mg/l) 

Nitrate 

(mg/l) 

20.03.2013 5D 22.8 15.5 9.60 6.12 51.60 31.9 0.25 8.580 10.826 1.375 1.248 6.700 

28.03.2013 10D 21.8 15.5 9.60 6.28 89.50 55.5 0.25 8.580 18.044 1.375 1.248 13.968 

03.04.2013 15D 22.5 15.5 9.48 5.49 36.70 22.7 0.11 9.900 17.867 2.381 0.958 9.843 

10.04.2013 20D 23.1 15.5 9.30 5.15 24.20 15.0 0.11 9.900 14.293 1.587 1.439 3.744 

17.04.2013 25D 22.7 15.5 9.30 5.17 20.50 12.7 0.15 7.920 10.720 1.587 0.959 3.587 

24.04.2013 30D 23.0 15.5 9.18 5.12 25.30 15.7 0.12 9.900 14.293 1.587 1.440 6.368 

29.04.2013 35D 23.9 15.5 9.24 5.29 34.60 21.5 0.13 9.900 14.293 1.587 1.440 8.991 

09.05.2013 40D 23.8 15.5 8.40 5.21 18.96 11.8 0.1 10.080 17.867 2.424 0.976 5.426 

13.05.2013 45D 23.6 15.5 8.28 5.34 18.48 11.5 0.16 12.096 17.867 3.232 0.975 6.031 

21.05.2013 50D 23.9 15.5 9.00 5.24 20.10 12.4 0.13 10.080 14.293 1.616 1.466 4.395 

29.05.2013 55D 24.2 15.5 9.30 5.42 26.40 16.3 0.18 12.096 14.775 1.616 1.955 7.063 

04.06.2013 60D 24.8 15.5 8.40 5.40 18.96 11.8 0.32 10.080 18.469 1.616 2.054 4.731 

11.06.2013 65D 24.3 15.5 8.40 5.69 57.90 35.9 0.26 16.128 22.163 4.040 1.463 11.861 

18.06.2013 70D 24.6 15.5 8.70 5.68 59.60 36.9 0.13 13.944 18.469 3.992 0.962 15.785 

24.06.2013 75D 24.3 15.5 8.82 5.38 16.07 10.0 0.25 9.960 14.775 1.597 1.448 2.915 

02.07.2013 80D 25.3 15.5 9.30 6.10 89.50 55.5 0.21 21.912 22.163 3.992 2.896 18.296 

10.07.2013 85D 25.5 15.5 9.00 6.09 95.70 59.4 0.19 25.896 22.163 6.387 2.409 18.520 

16.07.2013 90D 25.2 15.5 9.00 5.93 87.30 54.1 0.39 25.896 22.163 5.588 2.895 15.089 

24.07.2013 95D 24.3 15.5 9.00 5.53 20.90 13.0 0.11 11.952 14.775 1.597 1.932 3.722 

30.07.2013 100D 24.3 15.5 9.00 5.54 40.60 25.1 0.09 15.936 14.775 3.194 1.929 8.296 

20.08.2013 105D 24.4 15.5 8.28 5.65 40.40 25.1 0.13 15.936 14.776 3.194 1.929 8.363 

27.08.2013 110D 25.7 15.5 8.28 5.59 55.30 34.3 0.08 17.928 21.589 3.194 2.413 11.368 

04.09.2013 115D 25.8 15.5 8.10 6.31 166.00 102.9 0.23 65.736 33.245 16.766 5.782 20.762 
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Annex 2: Weights and Biases of the developed 

ANN Models  
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Annex 2.1 Permeate Flowrate Model 

A. MLP Model Weights and Biases Parameters  

1. Weights  

w1 = 

1.0e+004 * 

2.1020     0.0010    0.2902 

3.9812     0.0006    0.1109 

-2.2398   -0.0002   0.1350 

2.2809     0.0012   -0.5013 

1.4049    -0.0032   -0.0835 

-2.2021   -0.0004   0.1404 

 

2. Bias 

 

 

  

 

 

B. RBF Model Weights and Biases Parameters 

1. Weights 

 

w1 =   

0.0010    1.0000    0.0021 0.0010    0.8478    0.0021 0.0011    0.6826    0.0022 

0.0010    0.9449    0.0021 0.0010    0.1277    0.0026 0.0010    0.8667    0.0021 

0.0010    0.1248    0.0027 0.0010    0.1301    0.0024 0.0011    0.6783    0.0022 

0.0010    0.9261    0.0021 0.0011    0.1335    0.0023 0.0011    0.5899    0.0019 

0.0010    0.1293    0.0028 0.0010    0.8464    0.0021 0.0011    0.5768    0.0016 

0.0010    0.8841    0.0021 0.0010    0.8739    0.0021 0.0011    0.7174    0.0022 

0.0010    0.8870    0.0021 0.0010    0.5913    0.0022 0.0011    0.6696    0.0022 

0.0011    0.7188    0.0022 0.0010    0.8493    0.0021 0.0011    0.7072    0.0022 

0.0010    0.6362    0.0025 0.0011    0.7072    0.0022 0.0010    0.6058    0.0020 

0.0010    0.5609    0.0017 0.0011    0.6957    0.0022 0.0010    0.5884    0.0016 

0.0011    0.5623    0.0016 0.0011    0.1346    0.0023 0.0010    0.6058    0.0016 

0.0011    0.5696    0.0019 0.0011    0.1367    0.0022 0.0010    0.3884    0.0020 

0.0010    0.7130    0.0024 0.0011    0.1267    0.0025 0.0010    0.3580    0.0025 

0.0010    0.8928    0.0021 0.0011    0.1328    0.0028 0.0010    0.1286    0.0025 

0.0011    0.7507    0.0022 0.0010    0.1316    0.0028 0.0011    0.6884    0.0022 

0.0010    0.1275    0.0027 0.0010    0.1275    0.0026 0.0010    0.4246    0.0018 

0.0010    0.8768    0.0021 0.0011    0.6913    0.0022 0.0011    0.7130    0.0022 

0.0010    0.8667    0.0021 0.0011    0.1325    0.0023 0.0011    0.5493    0.0017 

w2 = 

-0.2687    0.3019  223.5272    0.0796   -0.2619  - 46.4168 

b1 = b2 = 

-37.2086 -176.58 

-50.3064 

 27.0244 

-20.7759 

12.533 

26.6482 
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0.0010    0.8623    0.0021 0.0010    0.1322    0.0023 0.0011    0.6942    0.0022 

0.0010    0.8580    0.0021 0.0011    0.5681    0.0017 0.0011    0.5884    0.0017 

0.0010    0.4203    0.0020 0.0011    0.5681    0.0018 0.0010    0.7029    0.0022 

0.0010    0.4101    0.0023 0.0011    0.5638    0.0019 0.0011    0.7420    0.0022 

0.0010    0.4275    0.0022 0.0011    0.5928    0.0017 0.0010    0.4928    0.0023 

0.0010    0.5797    0.0016 0.0010    0.6377    0.0019 0.0010    0.4261    0.0020 

0.0010    0.4109    0.0023 0.0011    0.5739    0.0017 0.0010    0.6043    0.0019 

0.0011    0.6174    0.0017 0.0010    0.4116    0.0023 0.0010    0.4638    0.0024 

0.0010    0.8449    0.0021 0.0010    0.1330    0.0023 0.0010    0.8696    0.0021 

0.0010    0.8522    0.0021 0.0011    0.6913    0.0022  

0.0010    0.6261    0.0017 0.0010    0.5768    0.0017  

0.0010    0.8899    0.0021 0.0010    0.3754    0.0020  

 

2. Bias 

                      

 

           *
Note: The same value of b1 (0.8326) is presented  for all (87) hidden neurons. 

  

 

 

 

 

 

 

w2 = 

1.0e+012 * 

-0.0217         0         0         0    0.1650         0         0         0   -0.9301         0         0         0    0.4269    

0.2069   -0.7532 

0         0         0         0         0         0         0   -0.3001         0   -0.1884         0         0         0         0         

0 

0    0.2885   -0.1225         0         0         0    1.1036         0         0         0         0         0         0         0         

0 

0         0         0         0         0    0.3565    0.1367   -0.3290         0         0         0         0   -0.6192         

0         0 

0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 

0         0         0         0         0         0         0         0         0         0    0.5800         0 

b1 = b2 = 

0.8326
* 

4.49E+05 
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Annex 2.2 TDS Model 

A. MLP Model Weights and Biases Parameters 

1. Weights 

w1 = 

1.0e+003 * 

0.2243   -0.0382    0.3152   -0.0040 

0.0004   -0.0000   -0.0001    0.0001 

1.1123   -0.2956    0.2323   -0.0003 

-0.7483   -0.5581  -0.0198    0.0030 

0.5801   -0.0173   -0.1304   -0.0020 

1.0436    0.3117   -0.0161    0.0124 

 

2. Bias 

b1 = b2 = 

-6.8833 0.6686 

-0.0798 

-5.1412 

30.196 

-1.1147 

-20.135 

 

B. RBF Model Weights and Biases Parameters 

1. Weights 

w1=  

0.0088    0.0348    0.0144    1.0000 0.0086    0.0385    0.0159    0.3968 

0.0089    0.0349    0.0159    0.3348 0.0086    0.0352    0.0157    0.3449 

0.0093    0.0348    0.0159    0.9899 0.0087    0.0368    0.0157    0.3709 

0.0082    0.0362    0.0209    0.3737 0.0083    0.0367    0.0144    0.9019 

0.0078    0.0325    0.0162    0.3506 0.0082    0.0339    0.0245    0.1667 

0.0078    0.0326    0.0157    0.3463 0.0084    0.0384    0.0162    0.3752 

0.0078    0.0351    0.0224    0.0232 0.0091    0.0348    0.0157    0.3622 

0.0093    0.0365    0.0152    0.9798 0.0091    0.0315    0.0224    0.1291 

0.0090    0.0378    0.0159    0.7446 0.0085    0.0341    0.0152    0.7186 

0.0078    0.0338    0.0159    0.0824 0.0083    0.0356    0.0157    0.3579 

0.0093    0.0371    0.0137    0.6912 0.0085    0.0349    0.0152    0.8167 

0.0079    0.0325    0.0224    0.0530 0.0096    0.0371    0.0137    0.7518 

0.0091    0.0367    0.0159    0.6999 0.0080    0.0359    0.0157    0.3694 

0.0081    0.0346    0.0162    0.3478 0.0092    0.0358    0.0166    0.7460 

0.0076    0.0345    0.0224    0.0290 0.0076    0.0342    0.0180    0.0798 

0.0083    0.0352    0.0157    0.3434 0.0078    0.0341    0.0180    0.0808 

0.0085    0.0341    0.0157    0.3420 0.0088    0.0316    0.0173    0.9163 

0.0084    0.0359    0.0159    0.3521 0.0099    0.0378    0.0148    0.8110 

0.0086    0.0346    0.0157    0.3550 0.0084    0.0355    0.0224    0.1469 

w2 = 

 -0.0003    6.6286    0.0002   -0.1402   -0.0054    0.0004 
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0.0094    0.0362    0.0202    0.2372 0.0086    0.0364    0.0224    0.1260 

0.0078    0.0339    0.0173    0.0876 0.0093    0.0358    0.0202    0.2304 

0.0091    0.0385    0.0144    0.8990 0.0078    0.0349    0.0224    0.0381 

0.0079    0.0341    0.0220    0.1159 0.0087    0.0361    0.0147    0.9221 

0.0078    0.0358    0.0224    0.0274 0.0092    0.0358    0.0159    0.7258 

0.0081    0.0342    0.0180    0.0756 0.0080    0.0342    0.0209    0.1413 

0.0098    0.0378    0.0152    0.8341 0.0091    0.0349    0.0202    0.2130 

0.0082    0.0362    0.0159    0.3737 0.0089    0.0354    0.0202    0.2049 

0.0083    0.0371    0.0159    0.3882 0.0080    0.0351    0.0224    0.0586 

0.0081    0.0341    0.0216    0.1231 0.0079    0.0341    0.0202    0.0794 

0.0081    0.0336    0.0180    0.0740 0.0089    0.0351    0.0202    0.1996 

0.0082    0.0343    0.0202    0.1144 0.0092    0.0358    0.0202    0.2283 

0.0082    0.0355    0.0224    0.0860 0.0086    0.0325    0.0159    0.8672 

0.0081    0.0341    0.0202    0.0903 0.0090    0.0352    0.0202    0.2100 

0.0077    0.0341    0.0224    0.0267 0.0074    0.0333    0.0224    0.0349 

0.0099    0.0374    0.0137    0.8225 0.0092    0.0359    0.0202    0.2237 

0.0081    0.0343    0.0157    0.3506 0.0088    0.0358    0.0202    0.1926 

0.0079    0.0341    0.0202    0.0755 0.0093    0.0358    0.0202    0.2020 

0.0079    0.0341    0.0202    0.0774 0.0094    0.0359    0.0202    0.2208 

0.0079    0.0338    0.0216    0.1238 0.0091    0.0356    0.0202    0.2061 

0.0075    0.0328    0.0224    0.0296 0.0074    0.0332    0.0224    0.0365 

0.0076    0.0345    0.0224    0.0499 0.0093    0.0359    0.0195    0.2290 

0.0088    0.0368    0.0224    0.1381 0.0091    0.0359    0.0202    0.2273 

0.0089    0.0348    0.0202    0.1981 0.0090    0.0330    0.0166    0.9105 

 

w2 = 

1.0e+009 * 

0.4109   0  -1.3389  0.3303   -4.1740  3.8274   -1.3559  1.4620   -0.9910   -0.6786   

-1.8244    1.1498 

3.6079         0         0         0         0         0         0   -1.0688   -0.1687         0         0    

3.0546 

0.2401         0    0.9829   -0.0591    0.8521         0    0.4888         0   -0.5746   -3.2856    

0.7222         0 

0.1107    1.8099         0         0         0   -0.8801         0    1.6097    1.7378         0         

0         0 

0   -1.4128         0   -2.3632         0         0    0.0378         0         0         0         0         0 

0         0    1.0904         0         0         0   -4.2251         0         0         0         0         0 

0         0         0   -1.3601         0         0         0    0.5266         0         0         0   -0.4108 

0         0    2.1199 

 

2. Bias 

 

 

 

                *Note: The same value of b1 (0.8326) is presented for all (87) hidden neurons 

b1 = b2 = 

0.8326
* 

-2.16E+03 
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Annex 2.3 Chloride Model 

A. MLP Model Weights and Biases Parameters 

1. Weights  

w1 = 

1.0e+003 * 

0.1132   -0.2100   -0.1956    0.0917 

0.8314   -0.4342    0.1251   -0.0134 

1.1807    0.2817    0.3183    0.0044 

-1.3893   -0.1780    0.2245    0.0035 

0.2390    0.0562   -0.0537    0.0021 

-0.1417   -0.5648   -0.6475   -0.0145 

-1.4970    0.3934    0.1054   -0.0066 

  

 

 

2. Biases 

 

 

 

 

 

 

 

B. RBF Model Weights and Biases Parameters 

1. Weights 

  

w1 =  

    0.0088    0.0348    0.0144    1.0000     0.0074    0.0333    0.0224    0.0349 

    0.0078    0.0351    0.0224    0.0232     0.0079    0.0341    0.0220    0.1159 

    0.0078    0.0358    0.0224    0.0274     0.0079    0.0338    0.0216    0.1238 

    0.0093    0.0348    0.0159    0.9899     0.0076    0.0345    0.0224    0.0499 

    0.0091    0.0385    0.0144    0.8990     0.0089    0.0354    0.0202    0.2049 

    0.0076    0.0345    0.0224    0.0290     0.0089    0.0351    0.0202    0.1996 

    0.0074    0.0332    0.0224    0.0365     0.0078    0.0349    0.0224    0.0381 

    0.0081    0.0342    0.0180    0.0756     0.0090    0.0352    0.0202    0.2100 

    0.0078    0.0338    0.0159    0.0824     0.0093    0.0358    0.0202    0.2304 

w2 = 

 0.0152   -2.9991    0.0427    0.1036    0.5191    0.1357   -0.0996 

b1 = b2 = 

-68.5994 -2.4704 

3.2365 

-29.0893 

12.7849 

-4.2338 

39.9263 

-2.6808 
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    0.0087    0.0361    0.0147    0.9221     0.0077    0.0341    0.0224    0.0267 

    0.0090    0.0330    0.0166    0.9105     0.0093    0.0358    0.0202    0.2020 

    0.0079    0.0325    0.0224    0.0530     0.0088    0.0358    0.0202    0.1926 

    0.0088    0.0316    0.0173    0.9163     0.0089    0.0348    0.0202    0.1981 

    0.0099    0.0374    0.0137    0.8225     0.0080    0.0342    0.0209    0.1413 

    0.0086    0.0325    0.0159    0.8672     0.0080    0.0343    0.0202    0.1391 

    0.0085    0.0349    0.0152    0.8167     0.0084    0.0355    0.0224    0.1469 

    0.0078    0.0341    0.0180    0.0808     0.0092    0.0359    0.0202    0.2237 

    0.0086    0.0364    0.0224    0.1260     0.0083    0.0371    0.0159    0.3882 

    0.0093    0.0365    0.0152    0.9798     0.0092    0.0358    0.0202    0.2283 

    0.0083    0.0367    0.0144    0.9019     0.0086    0.0352    0.0157    0.3449 

    0.0089    0.0349    0.0159    0.3348     0.0080    0.0351    0.0224    0.0586 

    0.0090    0.0378    0.0159    0.7446     0.0091    0.0356    0.0202    0.2061 

    0.0086    0.0346    0.0157    0.3550     0.0084    0.0359    0.0159    0.3521 

    0.0076    0.0342    0.0180    0.0798     0.0091    0.0359    0.0202    0.2273 

    0.0088    0.0368    0.0224    0.1381     0.0082    0.0362    0.0159    0.3737 

    0.0096    0.0371    0.0137    0.7518     0.0078    0.0325    0.0162    0.3506 

    0.0098    0.0378    0.0152    0.8341     0.0081    0.0341    0.0202    0.0903 

    0.0085    0.0341    0.0152    0.7186     0.0084    0.0384    0.0162    0.3752 

    0.0099    0.0378    0.0148    0.8110     0.0081    0.0341    0.0216    0.1231 

    0.0092    0.0358    0.0166    0.7460     0.0083    0.0356    0.0157    0.3579 

    0.0092    0.0358    0.0159    0.7258     0.0080    0.0359    0.0157    0.3694 

    0.0075    0.0328    0.0224    0.0296     0.0087    0.0368    0.0157    0.3709 

    0.0091    0.0367    0.0159    0.6999     0.0081    0.0343    0.0157    0.3506 

    0.0091    0.0349    0.0202    0.2130     0.0086    0.0385    0.0159    0.3968 

    0.0079    0.0341    0.0202    0.0794     0.0083    0.0352    0.0157    0.3434 

    0.0093    0.0359    0.0195    0.2290     0.0082    0.0362    0.0209    0.3737 

    0.0079    0.0341    0.0202    0.0774     0.0078    0.0339    0.0173    0.0876 

    0.0079    0.0341    0.0202    0.0755     0.0091    0.0315    0.0224    0.1291 

    0.0081    0.0346    0.0162    0.3478     0.0082    0.0355    0.0224    0.0860 

    0.0082    0.0343    0.0202    0.1144     0.0078    0.0326    0.0157    0.3463 

    0.0091    0.0348    0.0157    0.3622     0.0082    0.0339    0.0245    0.1667 

    0.0094    0.0362    0.0202    0.2372     0.0081    0.0336    0.0180    0.0740 

    0.0093    0.0371    0.0137    0.6912     0.0085    0.0341    0.0157    0.3420 

    0.0094    0.0359    0.0202    0.2208  
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2. Biases 

 

 

 

             *
Note: The same value of b1 (0.8326) is presented for all (87) hidden neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w2 = 

1.0e+010 * 

-0.9864    2.9951   -2.5181   -0.0754   -4.2132         0   -3.3422   -5.9523   -0.0055    1.3370    0.7911    

1.3015   -0.2101    4.5857   -0.4297 

-7.0812         0         0    1.0182    3.4933         0    6.8764         0    1.5633   -4.1042         0         0    

4.7127   -3.1367    1.3322 

0         0   -6.0216         0         0         0         0         0         0         0   -0.9960    4.1021   -2.1538         0        

0 

0         0         0         0         0         0         0         0         0         0   -2.5062         0         0         0         0 

0         0         0         0         0         0         0         0         0    6.1626         0         0         0         0   -0.3576 

0         0    1.5112         0   -1.6480         0   -1.6819    5.1374   -5.5283    1.2638    4.7649         0 

b1 = b2 = 

0.8326
* 

4.66E+04 



Annexes  

  

132 

  

Annex 2.4 Nitrate Model 

A. MLP Model Weights and Biases Parameters  

1. Weights  

w1 = 

    1.0e+003 * 

    0.8890    0.0437    0.1963    0.0338 

    0.9240    0.3649   -0.1935    0.0047 

   -0.9063    0.4088   -0.0330    0.0032 

    1.0625   -0.3131    0.2442    0.0259 

    0.3821    0.4854    0.1986    0.0015 

   -0.9067    0.3664    0.2413    0.0321 

   -1.3689   -0.0318    0.2256   -0.0030 

 

 

2. Biases 

b1 = b2 = 

-31.8077 -2.1609 

-23.5919 

-6.6462 

-3.8449 

-24.1995 

-34.0338 

15.7466 

 

B. RBF Model Weights and Biases Parameters 

1. Weights 

w1 =  

    0.0088    0.0348    0.0144    1.0000     0.0088    0.0316    0.0173    0.9163 

    0.0093    0.0348    0.0159    0.9899     0.0083    0.0367    0.0144    0.9019 

    0.0078    0.0351    0.0224    0.0232     0.0080    0.0342    0.0209    0.1413 

    0.0085    0.0349    0.0152    0.8167     0.0084    0.0384    0.0162    0.3752 

    0.0078    0.0338    0.0159    0.0824     0.0075    0.0328    0.0224    0.0296 

    0.0085    0.0341    0.0152    0.7186     0.0091    0.0359    0.0202    0.2273 

    0.0081    0.0336    0.0180    0.0740     0.0092    0.0358    0.0202    0.2283 

    0.0076    0.0345    0.0224    0.0499     0.0080    0.0359    0.0157    0.3694 

    0.0078    0.0325    0.0162    0.3506     0.0090    0.0352    0.0202    0.2100 

    0.0091    0.0315    0.0224    0.1291     0.0089    0.0348    0.0202    0.1981 

w2 = 

0.3367 0.1058    0.0411    0.0430   -0.0215    0.0658    2.7185 
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    0.0086    0.0385    0.0159    0.3968     0.0089    0.0351    0.0202    0.1996 

    0.0078    0.0349    0.0224    0.0381     0.0093    0.0359    0.0195    0.2290 

    0.0087    0.0361    0.0147    0.9221     0.0086    0.0325    0.0159    0.8672 

    0.0081    0.0346    0.0162    0.3478     0.0077    0.0341    0.0224    0.0267 

    0.0098    0.0378    0.0152    0.8341     0.0078    0.0341    0.0180    0.0808 

    0.0092    0.0358    0.0159    0.7258     0.0093    0.0358    0.0202    0.2304 

    0.0091    0.0348    0.0157    0.3622     0.0094    0.0359    0.0202    0.2208 

    0.0083    0.0371    0.0159    0.3882     0.0076    0.0345    0.0224    0.0290 

    0.0093    0.0365    0.0152    0.9798     0.0078    0.0358    0.0224    0.0274 

    0.0089    0.0349    0.0159    0.3348     0.0079    0.0341    0.0202    0.0755 

    0.0082    0.0362    0.0209    0.3737     0.0093    0.0371    0.0137    0.6912 

    0.0099    0.0374    0.0137    0.8225     0.0091    0.0349    0.0202    0.2130 

    0.0088    0.0368    0.0224    0.1381     0.0082    0.0343    0.0202    0.1144 

    0.0087    0.0368    0.0157    0.3709     0.0081    0.0341    0.0202    0.0903 

    0.0091    0.0367    0.0159    0.6999     0.0074    0.0333    0.0224    0.0349 

    0.0079    0.0341    0.0220    0.1159     0.0078    0.0326    0.0157    0.3463 

    0.0092    0.0358    0.0166    0.7460     0.0093    0.0358    0.0202    0.2020 

    0.0084    0.0359    0.0159    0.3521     0.0092    0.0359    0.0202    0.2237 

    0.0099    0.0378    0.0148    0.8110     0.0081    0.0341    0.0216    0.1231 

    0.0084    0.0355    0.0224    0.1469     0.0082    0.0339    0.0245    0.1667 

    0.0090    0.0378    0.0159    0.7446     0.0076    0.0342    0.0180    0.0798 

    0.0082    0.0362    0.0159    0.3737     0.0080    0.0351    0.0224    0.0586 

    0.0086    0.0364    0.0224    0.1260     0.0094    0.0362    0.0202    0.2372 

    0.0083    0.0352    0.0157    0.3434     0.0079    0.0341    0.0202    0.0794 

    0.0081    0.0343    0.0157    0.3506     0.0082    0.0355    0.0224    0.0860 

    0.0086    0.0346    0.0157    0.3550     0.0091    0.0385    0.0144    0.8990 

    0.0086    0.0352    0.0157    0.3449     0.0096    0.0371    0.0137    0.7518 

    0.0083    0.0356    0.0157    0.3579     0.0078    0.0339    0.0173    0.0876 

    0.0081    0.0342    0.0180    0.0756     0.0079    0.0341    0.0202    0.0774 

    0.0080    0.0343    0.0202    0.1391     0.0088    0.0358    0.0202    0.1926 

    0.0089    0.0354    0.0202    0.2049     0.0085    0.0341    0.0157    0.3420 

    0.0079    0.0338    0.0216    0.1238     0.0090    0.0330    0.0166    0.9105 

    0.0079    0.0325    0.0224    0.0530     0.0091    0.0356    0.0202    0.2061 

    0.0074    0.0332    0.0224    0.0365  
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2. Biases 

b1 = b2 = 

0.8326
* 

7.00E+04 

 

     
             *

Note: The same value of b1 (0.8326) is presented for all (87) hidden neurons. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w2 = 

1.0e+011 * 

-0.1348    0.1092    0.3399    0.0524    0.0354    0.3374    0.4616         0    0.5246    0.0810   -0.0942         

0    2.3173         0         0 

0    0.1287         0   -0.1949         0    0.0319   -0.1424   -0.0445         0   -1.2600         0    0.3356         

0    0.1175         0 

0.7296         0         0         0         0         0         0         0   -0.9865         0         0         0    0.0351   -

0.2914    0.6134 

-1.4904         0         0         0         0         0    0.2663         0         0         0         0   -0.0692         0         0         

0 

0         0   -0.1916         0    0.1385         0         0         0         0   -0.7667         0         0         0   -0.0560    

0.4892 

0   -0.0273         0    0.1763   -0.2062         0         0         0   -0.0601         0   -1.3048         0 
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Annex 2.5 Magnesium Model 

A. MLP Model Weights and Biases Parameters  

1. Weights  

w1 = 

   82.9272    9.7024   21.1063 

 -232.4371  -12.0321    7.0021 

  291.8791   -6.4181   37.6395 

 -218.7847  -13.1210    9.6294 

    3.4579    8.8526   19.1872 

  265.9760  -24.4619   -0.2181 

 

 

2. Biases  

b1 = b2 = 

-7.8271 -10.2442 

6.6818 

-9.7438 

6.3631 

-6.2899 

6.7147 

 

B. RBF Model Weights and Biases Parameters 

1. Weights 

w1=    

    0.0160    0.7522    0.1723     0.0168    0.7303    0.1719     0.0163    0.3790    0.1131 

    0.0226    0.0234    0.0215     0.0226    0.0806    0.0315     0.0175    0.1284    0.0417 

    0.0226    0.0299    0.0156     0.0226    0.0844    0.0323     0.0182    0.0816    0.0365 

    0.0226    0.0269    0.0260     0.0219    0.1243    0.0485     0.0204    0.0913    0.0420 

    0.0226    0.0752    0.0158     0.0182    0.0748    0.0263     0.0190    0.0867    0.0377 

    0.0248    0.1684    0.0521     0.0226    0.0869    0.0269     0.0153    0.7259    0.1615 

    0.0153    0.9898    0.2136     0.0226    0.1273    0.0323     0.0159    0.3732    0.1077 

    0.0160    0.7332    0.1667     0.0219    0.1251    0.0421     0.0159    0.3615    0.1000 

    0.0226    0.0293    0.0208     0.0182    0.0799    0.0323     0.0159    0.3499    0.1042 

    0.0226    0.0369    0.0208     0.0204    0.2121    0.0631     0.0153    0.8251    0.1736 

    0.0226    0.0504    0.0208     0.0204    0.2099    0.0631     0.0182    0.0764    0.0377 

    0.0211    0.3776    0.0592     0.0204    0.2041    0.0700     0.0159    0.3746    0.1077 

    0.0226    0.0535    0.0260     0.0204    0.2306    0.0700     0.0160    0.3557    0.1077 

w2 = 

  -11.6768   -6.3134  -10.5624    5.7000   18.8744    7.7390 



Annexes  

  

136 

  

    0.0138    0.6983    0.1562     0.0226    0.1395    0.0323     0.0159    0.3586    0.1094 

    0.0159    0.3455    0.0947     0.0204    0.1156    0.0431     0.0159    0.3542    0.0973 

    0.0226    0.0305    0.0215     0.0197    0.1070    0.0417     0.0159    0.3615    0.1077 

    0.0226    0.0385    0.0215     0.0204    0.2328    0.0839     0.0159    0.3469    0.1077 

    0.0226    0.0589    0.0215     0.0197    0.2359    0.0754     0.0160    0.8761    0.1841 

    0.0159    0.3382    0.0990     0.0226    0.1305    0.0263     0.0219    0.1227    0.0431 

    0.0197    0.2290    0.0754     0.0204    0.2070    0.0677     0.0146    0.9082    0.1992 

    0.0204    0.2152    0.0631     0.0204    0.2260    0.0727     0.0153    0.8426    0.1831 

    0.0149    0.9315    0.2154     0.0160    1.0000    0.2240     0.0149    0.8192    0.1831 

    0.0204    0.2089    0.0700     0.0204    0.2052    0.0700     0.0160    0.3921    0.1185 

    0.0175    0.9257    0.1894     0.0204    0.2016    0.0625     0.0138    0.8309    0.1831 

    0.0160    0.7114    0.1615     0.0204    0.2069    0.0651     0.0163    0.3542    0.1042 

    0.0168    0.9198    0.1979     0.0204    0.0782    0.0323     0.0204    0.2074    0.0677 

    0.0226    0.2420    0.0485     0.0204    0.0762    0.0323     0.0160    0.3382    0.0990 

    0.0204    0.2122    0.0677     0.0204    0.2230    0.0700     0.0175    0.0885    0.0313 

    0.0211    0.1427    0.0538     0.0204    0.2001    0.0677     0.0159    0.3659    0.1146 

    0.0160    0.7070    0.1562     0.0160    0.4009    0.1185     0.0168    0.0885    0.0313 

 

 

2. Biases 

b1 = b2 = 

0.8326
* 

9.35E+04 
                 

                  *
Note: The same value of b1 (0.8326) is presented for all (90) hidden neurons. 

  

w2 = 

1.0e+010 * 

0  0    3.0273   -1.7555   -0.9909   -1.3457    1.2792   0   0    0    0   -0.3577     0    1.2056   -4.5074 

0         0         0         0         0         0    0.9644         0   -0.7865         0    0.7723    1.9082    0    0  

  -1.2202 

-0.7277     0         0    6.8043   -2.5766   -2.5796       0       0      0      0      0   -6.4449     0     0      0 

0    1.6339         0    0.0432         0         0   -1.0047      0      0       0      0       0      0      0      0 

0    0.9539     0      0       0       0      0      0     0    1.6574   -1.2989       0       0      0     0 

0   -2.1190     0     0   -1.8381    0    2.3638   -1.9405   -2.6840    9.1956       0       0     0 0  

2.3689 


