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ABSTRACT 

THE SPATIAL AND TEMPORAL SIMULATION OF THE 

HYDROLOGICAL WATER BUDGET FOR YARMOUK 

RIVER BASIN UNDER CURRENT AND PROJECTED 

FUTURE CLIMATE 

By  

Alham Walid Saud Al-Shurafat 

In this study, the potential climate change over the trans-boundary Yarmouk River Basin 

(YRB) has been projected. The basin extends between Jordan and Syria and is relatively 

large of approximately 7004 km2. The basin climate is semi-arid that causes the basin to 

highly depend on irrigation. The climate has been downscaled and projected using the 

statistical downscaling model (SDSM). The scenarios used to drive SDSM are GHGs 

Representative Concentration Pathways (RCPs) using CanESM3 GCM and Special Report 

on Emissions Scenarios (SRES) A1B and A2 using CGCM3 GCM. All scenarios have 

agreed that the annual rainfall rate will continue to decrease while the temperature will 

continue to increase generally. There was a good statistical confidence in the projections 

based on the uncertainty analysis results that have been performed. Thus, the projections 

can be adopted with satisfying confidence for any intended climate change impact study in 

the YRB.  

After that, the projected climate change scenarios have been used to anticipate the climate 

change impacts on the YRB hydrological water cycle temporally and spatially. For this 

goal, the physically process-based semi-distributed hydrological model Soil and Water 

Assessment Tool (SWAT) has been used.  The basin was modeled at two conditions:      

(1) The basin as if it has stayed without any manmade changes (pre-development) and    

(2) The basin as it gets changed in the real life (post-development). The modeling 

evaluation measures indicated a satisfactory performance at the monthly scale. Under the 

pre-development conditions, the impacts are believed to be somehow disproportionate and 

of high risk. This can be ascribed to the inadequate SDSM ability to reproduce the actual 

precipitation pattern.  Under the post-development conditions, the impacts were of much 

less risk. In general, the results indicated that the YRB watershed hydrology is vulnerable 

to climate change. The major impact will be the spread of drought conditions without 

certain knowledge how severe it could be. In terms of political boundaries, the Jordanian 

side is expected to be the least vulnerable and even, on the contrary, its territories are 

expected to increase in rainfall. 
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Chapter One: Introduction 

1.1 Problem Statement and Significance 

The main surface and groundwater water resources of fresh water in Jordan are 

shared with neighboring countries. This is let Jordan to be involved in water conflicts and 

unfair conventions due to either the rivers headwaters presence in the shared countries or 

the balance of power difference. This situation lets inadequate fresh water available for 

Jordan comparing to what historically i.e. before the 1950s has been.  In the meantime, the 

pressure on water resources has been increasing due to the fast population growth rate, 

massive influxes of refugees from the neighboring countries and the rapid economic 

development. These factors combined have emerged water scarcity as the most detrimental 

environmental issue Jordan have to face at present and in the future. Currently, Jordan is 

considered one of the ten poorest countries in water worldwide. So far, water deficit has 

been handled through the unsustainable practice of overdrawing highland aquifers, 

resulting in lowered water tables and declining water quality. Nowadays, there is a large 

awareness about the seriousness of the situation led to tremendous efforts by governmental 

and non-governmental organizations. Main practiced ways in Jordan to sustain water 

include the efficient developments of new water supplies, water harvesting, small-scale 

desalination, reuse of wastewater for the agricultural sector, and water demands reduction 

(Abu-Jaber 2003; Hadadin 2010). 

Climate change is another recent decisive issue due to the demonstrated vulnerability 

of natural systems toward it. Consecutive droughts with varying severity within the 

different basins/regions have been detected over Jordan, though drought was never 

announced during the past decade.  The only time that a state of drought was declared 

nationwide in the history of modern Jordan was in 1998/1999; when the country was hit by 

extreme drought (with rainfall representing 30% of the annual average) for two consecutive 

water years until 2000 (Khordagui 2014; Shatanawi 2013). Therefore, for more profound 

sustainable management of water resources, projected changes in climate and their 

potential impacts on watershed hydrology has become indispensable Within this context, 

this study has been designed to project the future climate and evaluate its potential 

implications on a major surface water resource, the trans-boundary Yarmouk River Basin 
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(YRB). The basin riparians are Jordan and Syria as well as Israeli occupation of around 

1% of the basin after 1981. The study aiming at simulating climate changes and its impacts 

on the basin hydrology during the 21st century under various conditions spatially and 

temporally.  To achieve this, the most reliable modeling tools combined with the best 

available data and approaches have been used.  Such evaluation can help in enhancing the 

basin management and propose different adaptation schemes to possible extreme climate 

change conditions. 

 

1.2 Thesis Objectives  

The main objectives of this study for the YRB are: (1) to detect the climate change 

trends in the available records of climatological data, (2) to downscale and project the 

climate change using SDSM and address the model skill in downscaling such a semi-arid 

climate and (3) to analyze the impacts of the projected climate change on the YRB using 

SWAT 

 

1.3 Thesis Structure  

This dissertation is organized into seven chapters to address the research objectives 

with the first chapter introducing and providing organizing context to the dissertation. 

Chapter 2 contains a literature review related to the climate change, climate change models, 

the downscaling technique for climate change projections, hydrological modeling and a 

general literature review on downscaling and hydrological modeling related to the study 

area. 

Chapter 3 details description of the study area, input data sets used throughout the 

study, a comprehensive description of the used models and the underlying theory as well 

as the methods used for examining historical climate trends, developing climate change 

predictions and hydrologic simulation. In addition to that, all evaluation indices and 

criteria have been described thoroughly.  

Chapter 4 summarizes the historical trend analysis results to address the reality of 

climate change at the watershed scale.  

Chapter 5 outline the results of climate downscaling model calibration, validation, 

and the associated uncertainties, as well as the climate, changes projected along the 21st 

century under various carbon dioxide emission scenarios.  
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Chapter 6 shows the hydrological modeling and climate change impact results 

temporally and spatially under the projected climate change scenarios.  

Finally, Chapter 7 summarizes the overall conclusions and provides recommendations 

for future research related to this study. 
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Chapter Two: Literature Review 

2.1 Climate Change 

2.1.1 Climate Change Phenomena  

The 5th Assessment Report (AR5) of the Intergovernmental Panel on Climate 

Change (IPCC) reported that the globe average temperature has already increased by 

0.85oC (0.65–1.06oC) during the period of 1800–2012. In addition to that, substantial 

changes in precipitation patterns and amounts have been already detected worldwide 

spatially and temporally. These changes are attributable to the increased emissions of 

greenhouse gasses (GHGs) such as carbon dioxide, methane and others that followed the 

Industrial Revolution with the beginning of the eighteenth century due to primarily the 

fossil fuel burning and secondarily deforestation and air pollution. It has been observed 

that the Earth temperature had been cooling somehow before this sudden warming. The 

major GHG emitters are China, the USA, and India with approximately 50% of the total 

world GHGs emissions. Generally, what has been observed and also forecasted by climate 

change models is that wet areas are becoming wetter while dry areas are becoming drier. 

However, precipitation patterns haven’t changed that much because the changes in winds 

are still modest (Flato 2013; Dore 2005; Trenberth, 2011). 

The change in climate extremes events which are typically defined as floods and 

droughts are what actually the most influential due to their larger adverse impacts on the 

globe than averages (Field 2012; Katz, 1992). Easterling et al. (2000) examined 

painstakingly tremendous studies of climate extremes change in observations, modeling, 

and impacts. Their findings underlined the reality of climate change through evident total 

precipitation and temperature extremes change that is responsible for uncommon recent 

flooding damages, water scarcity, and biological species climate-induced extinctions, 

apparent gradual biological changes and species range shifts. Therefore, the prediction of 

climate for the twenty-first century have been attracting strong interest because those 

predictions are the vital key input for present and future impact studies worldwide. This is 

important for long-term planning, mitigation and adaptation strategies at all levels making 

their reliability a very critical issue (Meehl, 2007). 
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Regarding the climate change in the Middle East specifically, a high-level workshop 

performed a comprehensive reliable analysis of the trends in extreme precipitation and 

temperature indices change in the region. The workshop reported that for 1950–2003, there 

have been statistically significant and spatially coherent warming trends in extreme 

temperature indices. In the other hand, for extreme precipitation indices, the trends in the 

extreme events were found weak and do not have spatial coherence (Zhang, 2005). For 

Jordan in particular, Smadi (2006) detected trends and abrupt changes in the mean Tmax 

and Tmin after studying the oldest major Jordanian meteorological station Amman Airport 

between 1922 and 2005. Their results revealed the occurrence of sudden climate changes 

in 1957 and 1967 which after gradual significant warming trend of 0.038oC/year was 

found to be happening.  Al-malabeh et al. (2016) studied the Jordanian Badia, Syrian 

Badia and Saudi neighboring areas at 9 representative stations which are Mafraq, Safawi, 

Rwaished, Azraq, Um El-Jumal, Ramtha in Jordan, Dara’a at south Syria, and Turaif and 

Guriat at North Saudi-Arabia. Their results outlined with significant confidence that air 

temperature is increasing at annual rate 0.02-0.06oC/year while precipitation is decreasing 

at annual rate 0.5-2.6 mm/year. 

For the 21st century projection of climate change, Evans (2009) has used 18 global 

climate models (GCMs) partaking in the IPCC Fourth Assessment Report (AR4) to 

scrutinize the future projections in the middle east under the Special Report on Emission 

Scenarios (SRES) A2 emission scenario. His findings predicted warming and highlighted 

that overall temperature may increase around 1.4oC and 4oC by mid- and late-century 

respectively while precipitation is expected to decrease widely especially in the Cyprus, 

Greece, Lebanon, Syria, Palestine, Israel, Turkey, Egypt Jordan, Libya, Turkey, Syria, and 

Northern Iran. Nevertheless, there would be a slight increase in the southernmost areas 

because of the Northward movement of the Inter-Tropical Convergence. Those predictions 

are consistent with those of  Lelieveld et al. (2012) who had examined long-term 

meteorological datasets as well as regional climate model projections under the SRES A1B 

scenario speculating that droughts would increase in terms of intensity and frequency and 

rainfall would decrease in terms of days and amount in the region. This future picture of 

pronounced increase of temperature and decrease in precipitation under various scenarios 

is attributed to increased anticyclonic circulation resulting in increasingly stable conditions 

and is associated with a northward shift of the Atlantic storm track (Giorgi, 2008).  

Consequently, it is well conceded that middle east will be one of the most expected regions 

for profound climatic change (Stocker 2013; Giorgi, 2008). Major direct impacts of these 
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projected climate changes would encompass mainly heat stress and more fresh water 

scarcity particularity in the Levant (Lelieveld, 2012). However, should keep in mind that 

there is a big “if” surround those projections due to the inherent uncertainties in the climate 

models at this regional scale specifically in terms being unable to capture orographically-

induced fine scale region structure (Prudhomme 2009; Giorgi, 2008).  

 

2.1.2 Climate Change Mitigation 

Climate change due to man-made changes that are reflecting in the unnatural high 

GHG emissions can be reduced or even stopped totally through various possible mitigation 

ways as most scientists confirmed. Climate change mitigation has become a common 

phrase that refers to all efforts to reduce or prevent the emission of GHGs. Mitigation can 

mean using new technologies and renewable energies that can replace fossil fuels, making 

older equipment more energy efficient, or change management practices or consumer 

behavior (IPCC, 2011). The bulk of the burning of fossil fuels is to generate electricity. 

Therefore, IPCC has assessed most efficient electricity generation mitigation technologies 

that included coal- and gas-fired power plants, solar power technologies, hydropower, 

wind power, and geothermal. Nuclear power was found to be of the largest mitigation 

potential and have the second lowest mitigation costs after hydropower. Currently, nuclear 

power is used within 29 countries and produce 15% of the world’s electricity, thus, saving 

is 20% of the globe GHGs emissions. Accordingly, many countries are increasingly 

turning to develop a peaceful, civilian nuclear energy programs. However, there are risks 

associated with an increasing use of nuclear power including mainly the operational safety 

concerns, uranium mining risks, unresolved waste management issues, nuclear weapon 

proliferation concerns, and adverse public opinion (IPCC 2015; IPCC, 2007; Jordan 

Atomic Energy Commission (JAEC) 2011).  

Europe is the pioneer in the renewable energy sector with having Germany, 

Denmark, and Sweden as the leading countries (Jacobsson, 2009). For example, the 

Denmark produces most days more than 100% of the need of electricity using the 

renewable energy. Denmark and Sweden are planning to become first-fuel free nations in 

the world by 2050 due to the immense public campaigns to stop climate change (The 

Offical Website of the Denmark, 2016; The Government of Sweden, 2016). The main 

challenge to renewable energy worldwide spread is the investment high capital costs 

though actually as soon as one invest in the renewable energy, it will become free of 

charge forever making it very profitable. This is leaving the main hinder of the spread the 
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renewable energy, in reality, is the systematic resistance campaigns by the powerful fossil 

fuel companies for the sake of their interests and profits (Peidong, 2009). The USA is the 

least country in taking action toward the climate change because the USA barely believes 

in climate change though it is one of the main GHG emitters (McCright, 2013; Betsill, 

2001).   

One of the most effective mitigation opportunities is stopping the rainforests cut for 

the sake of commercial products that can be dispensed with because those forests play a 

key role in maintaining the stability of the climate of the earth via absorbing and storing a 

huge portion of the atmosphere carbon dioxide (Canadell, 2008).  Another opportunity is 

to replace a large part of cows breeding for meat production purposes with other varieties 

such as chicken since cows breeding is the main source of the methane that its molecule is 

equivalent to 23 carbon dioxide molecule (Goodland, 2009).   

Scientists believe that if the GHGs emissions that resulting from human activities 

stops, the Earth will be able in a short time to restore its climate and the poles will regain 

quickly the ice that has melted through the last few decades due to global warming. Within 

this framework, several climatic summits have been to address the reality of the climate 

change and the possibilities of mitigation and adaptation, which finally culminated in the 

Paris Climate Change Summit agreement 2015. The agreement was within the United 

Nations Framework Convention on Climate Change (UNFCCC) in which 93 UNFCCC 

members have signed the treaty of following all the possible climate change mitigation and 

adaptation measures, as well as financing by the year 2020 with 100 members, have 

already ratified the treaty (United Nations Framework Convention on Climate Change 

(unfccc) 2015). Jordan is among the countries who ratified Paris treaty and plan to have 

sustainable, environmentally friendly long-term economic growth. To achieve this goal, 

Jordan established a nuclear power plant program to provide a reliable energy source with 

very low GHGs emissions. Two planned nuclear reactors are under construction and will 

be in operation by 2025 to provide nearly half the country’s electricity (Jordan Atomic 

Energy Commission (JAEC) 2011).  
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2.2 Downscaling 

Currently, Global Climate Models (GCMs) are the commonly used approach to 

project the climate change on global and continental levels under various GHGs emission 

scenarios. IPCC assessment reports are all based on large data sets of future climate 

projections provided by many modeling groups worldwide who run several GCMs under 

various experiments and GHGs emissions scenarios (Fowler 2007; Semenov, 2010).  

However, the GCMs has a low capability to capture complex topographical features and 

meteorological processes at regional (50×50 km) and local (0–50 km) scales due to its 

coarse resolutions (100–500 km). Accordingly, the GCMs output is considered of no use 

for climate change impact studies at subgrid scales (Gu 2012; Xu, 1999). For example, it’s 

common to predict potential climate change at the watershed scale because comprehending 

climate change impacts on watershed hydrology is a valuable knowledge toward managing 

freshwater resources within any watershed  (Oni, 2014).  

To overcome this problem, downscaling techniques have emerged to build 

relationships between GCMs output and subgrid climate variables such precipitation and 

temperature which are what impact assessors require (Wilby, 1997). There are two broad 

approaches of downscaling which are either dynamical or statistical. The dynamical 

approach employs fine-resolution regional climate models (RCMs) and nests it into the 

GCMs over a limited area, thus become able to capture physical processes at a subgrid 

resolution. In the other hand, the statistical approach provides statically relationships 

between GCMs large-scale variables (predictors) and subgrid observed scale climate 

variables (predictands). Both approaches of downscaling have been reviewed thoroughly 

in a number of key papers.  The reviewers agreed that the statistical approach is the 

preferred because of its implementation ease, low cost and relative fewer computations 

while maintaining an acceptable level of accuracy (Maraun 2010; Wilby, 1997; Wilby, 

2002).  

One of the most recommended statistical downscaling tools currently available is the 

Statistical Downscaling Model (SDSM) for both mean and extreme climate change impact 

assessment studies (Gachon, 2005; Dibike, 2008; Khan, 2006; Wilby, 2007; Wilby, 2002; 

Hashmi, 2011). SDSM is a hybrid of multi-regression based methods and stochastic 

weather generator that facilitates the rapid development of multiple, low-cost, single-site 

scenarios of daily surface weather variables under present and future climate forcing. 

SDSM is the most ubiquitous statistical downscaling software used in the scientific 
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literature with over 200+ studies in over 39 countries. Though SDSM reliability as 

decision support tool has already been demonstrated, its skill in simulating temperature is 

much better than precipitation (Wilby, 2002; Gachon, 2005). Therefore, to overcome that, 

it is recommended simulating the largest possible number of rainfall stations in the 

targeted area and examine carefully the quality of the SDSM input rainfall data. 

Furthermore, future climate projection is accompanied with a high amount of uncertainties 

that originated from the GCMs and the downscaling technique itself (Prudhomme 2009). 

Those uncertainties that are connected to the GCMs are the greatest (Chen, 2011). 

Therefore, conducting uncertainty analysis is inevitable in climate change impacts studies 

because the potential transformation of existing biases in baseline simulation to future 

simulations is a decisive matter (Prudhomme, 2009).  

 

2.3 Hydrologic Modeling 

Hydrology is the study of earth's waters motion through the hydrologic cycle, as well 

as constituents (e.g. sediment and pollutants) transport with the water flow (Maidment, 

1996). Many models have been developed over the past decades in order to simulate and 

predict the hydrological water budget within any region and at any scale (Arnold, 1996). 

The first widespread hydrologic models generation has been the not very physically-based 

lumped models that consider the watershed as a single unit with a single rainfall input and 

based on the unit hydrograph (UH) concept assuming the rainfall excess is only what 

generate runoff. The UH can be derived from recorded hydrologic data or statistical 

parameters based on the watershed physical characteristics.  Afterward in the 1970s, what 

called black box models have evolved and it included primarily two types: the 

autoregressive models and artificial neural network models. Both types based on the 

concept of time series analysis but the second type is able to incorporate information based 

on available data. Because of the many inherent simplifications of these models, it is not 

possible to capture the heterogeneity within the watershed thus very high uncertainties in 

its output. Nowadays after the technology has evolved dramatically, it became possible 

obtaining a comprehensive spatial knowledge of wide variety of variables representing a 

study area at fine resolution (100-500m) and handling this enormous information in a very 

short time.  This led to moving toward the physically-based distributed models in which 

variables spatial variability is integrated thus modeling more faithfully and accurately the 

hydrologic processes that happen within a watershed. These models are complex and 

require the identification of tremendous of spatial parameters that should be estimated 
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from field data as possible, otherwise, should be calibrated. Then those calibrated 

parameters are incorporated in the distributed model to apply the hydrologic processes 

equations to each resolution unit and later aggregate the neighbor units’ output. The 

hydrological models constitute the most effective tools for the study of climate change or 

management practices impacts over any hydrological units (Singh, 1989). 

One of the most used worldwide distributed hydrologic model is the Soil and Water 

Assessment Tool (SWAT). SWAT is continuously under development at the USDA-ARS 

and the Texas AgriLife Blackland Research Center in Temple, Texas, as well as other 

research sites in North America and in other regions by multiple user groups that keep 

developing the model itself, its use and the calibration and validation approaches such as 

SWAT, ArcSWAT, VizSWAT, SWAT-CUP, Latin American, southeast Asia, Africa, Iran, 

and Brazil user groups. SWAT various applications have been documented by an immense 

number of publications that outlining the model high efficiency to predict the effect of 

climate and management decisions on water, sediment, nutrient and pesticide yields with 

reasonable accuracy on large, ungagged river basins.  Many official institutes have adopted 

SWAT as the main model to study any climate or management impacts on a watershed 

such as NRCS (Temple and other Locations), EPA, Environmental Consulting Firms, 

Texas River Authorities, universities, NOAA as well as many similar entities worldwide 

(USDA Agricultural Research Service 2016; Arnold, 2012).   

 

2.4 Related Studies to the Study Area  

Kunstmann et al. (2007) have downscaled dynamically the ECHAM4 GCM climate 

output for the Upper Jordan basin under the scenario B2 with the meteorological model 

MM5 to a final resolution of 18 km. The climate projections were used then to drive the 

distributed, physically-based hydrological model WaSiM. It was found that by 2070–2099 

relative to 1961–1990 period, mean annual temperature will increase up to 4.5oC, and mean 

annual precipitation will decrease down to 25%. The impacts will be total runoff decrease 

by 23%, and a significant groundwater recharge decrease. 

Abdulla et al. (2009) used various climate conditions included ±20% rainfall change, 

and 1oC, 2oC and 3.5oC average temperature increase in run the distributed model 

BASINS-HSPF for the Zarqa River Watershed (ZRW). The ZRB is one of the major 

tributaries of the Jordan River Basin that is characterized by a semi-arid climate. The 

obtained results indicated warming can be influenced by changes in rainfall significantly 

and can dramatically impact runoffs and groundwater recharge.  
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Samuels et al. (2010) have used a technique based on the statistical correction of 

observed and modeled climate to downscale the regional climate model RegCM3 

precipitation output to the station level in the Jordan River basin under the SRES A1B 

scenario. After that, the climate change projections were integrated into a watershed model 

called the Hydrological Model for Karst Environment (HYMKE). The results have been 

suggested slight changes in precipitation and potential evaporation during 2010-2035. By 

2060, a precipitation decrease of about 10% and evaporation increase of about 5% can 

occur. These changes will reduce the Jordan River and its tributaries daily mean baseflow 

by10%–11% and the streamflow by 17%. 

Wade et al. (2010) quantified the impact of climate change on the water resources of 

Jordan by the end of the 21st century via driving a suite of hydrological models with the 

output scenarios regional climate model, HadRM3. The projections illustrated there will be 

an increase in mean annual winter precipitation and increase in mean annual near-surface 

air temperatures causing further reduction in the groundwater recharge. However, the 

extreme flood flows will not be affected in the upper River Jordan substantially.  

Smiatek et al. (2011) estimated the future climate conditions in the Jordan River 

region, using a nested dynamic downscaling approach using the National Center for 

Atmospheric Research–Penn State University meteorology model. SRES A1B emission 

scenario from Hadley Centre global circulation model was used to drive the dynamical 

model for the period 1960–2099. The results showed good reproduce of the mean 

temperature and precipitation patterns but limited precipitation seasonality reproduction. 

The projections showed mean annual mean temperature increase/precipitation decrease of 

2.1oC/−11.5% for 2031–2060 and 3.7oC/−20% for 2070–2099 relative to the baseline 

period 1961–1991. In addition, the results expected a larger interannual precipitation 

variability and more heat waves. Therefore, it was concluded that water availability in the 

Jordan River region will vulnerable to the risk of significant reduction. 

Samuels et al. (2011) presented results from regional climate model simulations with 

RegCM3 and MM5 for the Jordan River region of the Middle East to project changes in 

frequency and intensity of extreme events. The results showed that maximum daily 

summer temperature is expected to increase 2.5-3oC, with an increase in warm spell length. 

Precipitation extremes are expected to increase with longer dry spells, shorter wet spells, 

and more heavy rainfall. 
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Chenoweth et al. (2011) investigated the likely impacts of climate change on the 

water resources within the eastern Mediterranean and Middle East region using a high-

resolution regional climate model (PRECIS). The projections showed approximate 10% 

decrease in precipitation across the study area by the middle and the end of the 21st century. 

In the Middle East, climate change coupled with population growth is likely to reduce per 

capita water resources considerably. Among the countries of the highest need for 

adaptation were Syria due to its large agricultural workforces and Jordan due to its low per 

capita water resources coupled with limited options for desalination.  

Smiatek and Kunstmann (2015) have used climate change data from five different 

RCM models run in two Coordinated Regional Climate Downscaling Experiments 

(CORDEX) experiments to evaluate its impacts on the future discharge of the Upper 

Jordan River. Impacts were modeled using the hydrological simulation model WaSiM-

ETH. The results indicated an annual mean temperature increase/precipitation increase of 

2.6oC/-20% and discharge decrease of -25.3% by 2071-2100 relative to 1971-2000.  

 Raggad et al. (2016) have statistically downscaled different GCMs to examine the 

impact of the current climatic conditions on the variability of groundwater recharge in 

Ajlun Highlands in Jordan along the 21st century. Groundwater recharge was modeled 

using the J2000 water budget model. The results showed that on average, the precipitation 

will decrease by 18.7% while maximum and minimum temperatures will increase by 1.7oC 

and 2.2oC respectively by the year 2050. This will cause the groundwater recharge to 

reduce by 27% less than current recharge. This in turn with the continuous over-pumping 

will reduce the saturated aquifer thickness by 20 to 65%.   
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Chapter Three: Study Area, Data Sets and Methodologies 

At the outset, this chapter will explain enough the nature of the study area. 

Subsequently, the chapter will detail all the data necessary to conduct the study followed 

by an adequate explanation of the used method.   

 

3.1 Study Area 

The surface Yarmouk River Basin (YRB) extends within two countries Jordan and 

Syria in a semi-arid region. The basin is of volcanic origin overlies basalts plateau 

covering around 78% of its area featuring mountainous and plains regions (Burdon 1954). 

The basin total area is approximately 7004 km2 of which 1424 km2 (21%) lies inside 

Jordan while 79% lies in Syria of which 10% (Golan Heights) is under the Israeli 

occupation as seen in Figure 3.1. The basin extends from Jabal al-Arab heights to the east, 

Ghabaghab to the north and the city of Qatna to the northwest in the Syrian territories and 

to include northern and eastern Irbid, and western Mafraq in the Jordanian territories. The 

altitudes in the basin vary from 1858 m a.m.s.l at Jabal al-Arab then fluctuates between 

500 and 650 a.m.s.l in the plain in the basin middle to the lowest point 212 m b.m.s.l at the 

confluence with the Jordan River which is the basin outlet. The basin’s middle plains 

contain many hills in the mid-north of the western edge, such as the Harah, Jaybah, Jumu’, 

Al-Ahmar Al-Sharqi, Al-Ahmar Al-Gharbi, and other hills.  

The basin seasonal rivers and valleys drain into the approximately 60 km narrow and 

shallow perennial Yarmouk River (YR) forming the border between Jordan and Syria. The 

river is the largest tributary of the Jordan River (JR) joining it below Lake Tiberias 

measuring its largest width of 9 m and depth of 1.5m. The river main tributaries are the 

seasonal streams Allan and Ruqqad from the north and Harir, Dahab and Zeidi from the 

east within the Syrian territories (AL-Momani, 1993).  The river mean annual historic flow 

was estimated at 450-500 MCM up to the 1950s which after has been declining to reach 

83-99 MCM at present due to the construction of a series of infrastructure and diversion 

schemes. However, the river has a highly variable torrential flow with a very low baseflow 

that ranges currently from 0.5 to 5 m3/s and prone to irregular flooding caused by rain 

storms of about 71 MCM.  
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Syria and Jordan have signed a bilateral treaty over the sharing of the YR in 1987 in 

preparation for the construction of the Al-Wehda dam on the border between the two 

countries. Much of the flow of the YR is diverted by Syria, leaving only a small share to 

Jordan amounting to only about one-third of the proposed share as per treaties and 

agreements (Ministry of Water and Irrigation, 2016). Jordan uses 290 MCM/yr of water 

from JR and YR and diverts it to the King Abdullah Canal to be used for irrigation of 

crops in the Jordan Valley and for domestic use in the Jordan capital Amman. Currently, 

the YRB undergo increasing intensive urban, industrial and agricultural activities and 

plays a central role in socioeconomic development for both Jordan and Syria (UN-

ESCWA, 2013).  

 

Figure 3.1: Location map of Yarmouk River Basin (YRB) 

 

The climate prevails in the YRB is classified as Mediterranean subtropical climate 

(CSA) that has moderate seasonality (Kottek, 2006). The seasons are December of the 

previous year to February (winter), March to May (spring), June to September (summer) 

and October to November (autumn). Summers are dry and hot because of subtropical high-

pressure systems domination while winters have moderate temperatures and changeable, 

rainy weather due to the polar front.  The observed mean precipitation and temperature 

http://www.irbid.climatemps.com/precipitation.php
http://www.irbid.climatemps.com/temperatures.php
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along the year (1981-2009) are depicted in Figure 3.2. Spatially, average annual rainfall 

ranges approximately from 106 mm in the southern lowlands (Jordanian desert) up to 486 

mm in the northern west (Golan Heights). Average Tmax-Tmin ranges from 30-13oC in 

the low western lowlands (Jordan Valley) and 18-10oC in the highlands. 

 

Figure 3.2: Mean monthly climate diagram of YRB as observed (1981-2009) 

 

3.2 Data Sets 

3.2.1 Basin Delineation 

The delineation was done using 1 arc-second (approximately 30m) resolution Digital 

Elevation Model (DEM) from the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER). One-degree tiles covering the study area were downloaded from 

USGS Earth Explorer website (http://earthexplorer.usgs.gov/) and then processed using 

tools within ArcGIS 10.2.1 (©1999–2013 Esri Inc.) into voids sink and mosaicked DEM 

The DEM was projected to the Universal Transverse Mercator (UTM) projection system in 

northern hemisphere zone 36N that encompass the study area. The YRB basin boundaries 

were extracted from the DEM using ArcSWAT interface for the Soil and Water 

Assessment Tool (SWAT) 2012. The basin is shown in Figure 3.1. % 

 

3.2.2 Basin-Scale Observed Climate Data (Predictands) 

Local observed daily climate (natural variability) at 13 stations for precipitation 

(PRCP) and 5 stations for maximum temperature (Tmax) and minimum temperature 

(Tmin) were obtained from the Jordanian Ministry of Water and Irrigation (MWI), 
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Department of Meteorology. Other ten stations for annual rainfall amounts from 1960 to 

1984 were obtained from the Syrian Meteorological Department in 1985 by the Jordanian 

MWI for the Project of Water Resources Investigation in North Jordan (Yarmouk, 

Amman-Zarqa, and Azraq Basin) to represent the Syrian part of the YRB. The total 28 

stations are shown in Figure 3.3 while Table 3.1 and Table 3.2 summarize the stations' 

information, their geographic characteristics and the temporal span of data availability. 

Other climate information including wind speed, solar radiation and dew-point were taken 

from the gross meteorological stations Irbid and Baqoura. 
 

 

Figure 3.3: The YRB meteorological stations that have been used in the study 
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Table 3.1: Geographic characteristics and the temporal span of data availability of the 

meteorological stations for precipitation that used in the study 

Station 

ID 

Station 

name 

Elevation 

(m) 
Latitude Longitude 

Data 

availability 

Record 

length 

(yr.) 

Country 

AE0001 Irbid 616 32° 33' 33" 35° 50' 57" 1938-2009 71 JO* 

AD0003 Kufr Saum 423 32° 41' 2" 35° 47' 55" 1981-2009 29 JO 

AD0005 Um Qeis 351 32° 39' 16" 35° 40' 45" 1981-2009 29 JO 

AD0008 Kharja 441 32° 39' 29" 35° 53' 13" 1981-2009 29 JO 

AD0010 Husn 637 32° 29' 12" 35° 52' 50" 1981-2009 29 JO 

AD0011 En Nueyime 748 32° 25' 2" 35° 54' 43" 1981-2009 29 JO 

AD0012 Ramtha 513 32° 33' 39" 36° 0' 12" 1981-2009 29 JO 

AD0013 Khanasira 810 32° 23' 38" 36° 2' 40" 1981-2009 29 JO 

AD0019 Mafraq 667 32° 19' 20" 36° 14' 10" 1981-2009 29 JO 

AD0021 Turra 446 32° 37' 53" 35° 59' 29" 1981-2009 29 JO 

AD0022 Hosha 589 32° 27' 2" 36° 3' 40" 1981-2009 29 JO 

AD0023 Jaber 571 32° 30' 36" 36° 11' 60" 1981-2009 29 JO 

AD0032 Baqura -227 32° 36' 45" 35° 35' 49" 1981-2009 24 SYR** 

AD0400 Izra'a 575 32° 51' 30" 36° 15' 26" 1961-1984 24 SYR 

AD0401 Nawa 563 32° 53' 12" 36° 7' 7" 1961-1984 24 SYR 

AD0403 Sanamein 750 33° 2' 53" 36° 12' 21" 1961-1984 24 SYR 

AD0405 Shahba 1250 32° 51' 17" 36° 37' 13" 1961-1984 24 SYR 

AD0408 Tell Shihab 299 32° 41' 53" 35° 58' 2" 1961-1984 24 SYR 

AD0409 Suweida'a 1010 32° 42' 40" 36° 33' 53" 1961-1984 24 SYR 

AD0412 Dara'a 500 32° 36' 58" 36° 5' 40" 1961-1984 24 SYR 

AD0413 Mseifrah 685 32° 38' 29" 36° 20' 24" 1961-1984 24 SYR 

AD0414 Busral Sham 800 32° 31' 22" 36° 28' 36" 1961-1984 24 SYR 

F-S1 Salkhad 1447 32° 29' 3" 36° 42' 37" 1961-1984 24 SYR 

*JO=Jordan **SYR=Syria 

 

Table 3.2: Geographic characteristics and the temporal span of data availability of the 

meteorological stations for the temperature that used in the study 

Station 

ID 

Station 

name 

Elevation 

(m) 
Latitude Longitude 

Data 

availability 

Record 

length 

(yr.) 

Country 

AD0032 Baqura -227 32° 40' 0" 35° 37' 0" 1970-2005 35 JO* 

AD0034 Samar 332 32° 33' 54" 35° 41' 28" 1981-2009 28 JO 

AE0001 Irbid 616 32° 32' 4" 35° 51' 18" 1970-2005 35 JO 

AH0003 Ras Muneef 1150 32° 22' 49" 35° 48' 41" 1976-2005 29 JO 

AL0059 Um El Jumal 650 32° 18' 8" 36° 20' 39" 1976-2009 33 JO 

*JO=Jordan 
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3.2.3 Large-scale Atmospheric Variables (Predictors) 

Twenty-six large-scale observed and modeled atmospheric variables (predictors) 

were downloaded from the Canadian Climate Change Scenarios Network (CCCSN) 

website (www.cccsn.ec.gc.ca/). Modeled predictors were obtained for two GCMs due to 

the downscaling input files availability in formats compatible with the statistical 

downscaling model (SDSM). Both GCMS were developed by the Canadian Centre for 

Climate Modelling and Analysis (CCCma) in Canada. One model is the Coupled Global 

Climate Model (CGCM) that generates climate change scenarios using Greenhouse Gases 

(GHG) Special Report on Emissions Scenarios (SRES). The other model is the second 

generation of Earth System Model (CanESM2) that generates climate change scenarios 

using GHG Representative Concentration Pathways (RCPs). 

The SRES scenarios were published in 2000 and IPCC had adopted them for its 

Third Assessment Report (TAR) in 2001 and Fourth Assessment Report (AR4) in 2007. 

SRES are expressing changes in GHG emissions that accompany specific possible future 

socioeconomic, technological, demographic, and political storyline of developments and 

radiative forcing. Both A2 and A1B scenarios that have been adopted in this study belong 

to the economic focus family and expect the emissions to continue to increase along the 

21st century (Figure 3.4). By the end of 21st, the storyline A2’s CO2 concentration is 

expected to reach approximately 840 ppm while the moderate storyline A1B will reach 

700 ppm.  

RCPs have been adopted by the IPCC for the Fifth Assessment Report (AR5) in 

2014 to supersede SRES projections. RCPs reflect GHG concentration (not emissions) 

trajectories of possible climate futures of anthropogenic (i.e., human) GHG emissions. In 

other words, RCPs are not based on predefined storylines as it’s the case of SRES but 

instead RCPs radiative force change can have resulted from a variety of possible 

combinations of economic, technological, demographic, and policy developments with the 

years to come will reveal which trajectory is the most possible. The used RCPs in the study, 

RCP2.6, RCP4.5, and RCP8.5, are expressing possible radiative forcing values increase 

(+2.6, +4.5, and +8.5 W/m2, respectively) relative to pre-industrial values by the year 

2100. The radiative forcing in the friendliest pathway RCP2.6 will peak at approximately 3 

W/m2 (~400 ppm CO2) and then declines to 2.6 W/m2 (~330 ppm CO2) in the year 2100. 

The moderate pathway RCP4.5 radiative forcing will keep increasing up to approximately 

4.5 W/m2 (~540 ppm CO2) by the end of the 21st century. The worst pathway RCP8.5 

http://www.cccsn.ec.gc.ca/
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radiative forcing will continue to rise until peaking at around 8.5 W/m2 (~940 ppm CO2) in 

the year 2100 (Stocker, 2013; Flato, 2013; Sillmann, 2013). All SRES and RCPS carbon 

dioxide (CO2) concentrations trajectories as observed in the 20th century and projected 

along the 21st century are displayed in Figure 3.4 (Sillmann, 2013).   

 

 

Figure 3.4: CO2 concentrations in ppm that used do drive climate change scenario 

simulations by the IPCC (Sillmann 2013). 

 

More details about the used two GCMs and it's grid boxes that cover the YRB are 

summarized in Table 3.3 while Figure 3.5 shows the GCMs grid boxes that overlaid YRB. 

The downloaded dataset from each model contain the observed predictors that are derived 

from the National Center for Environmental Prediction (NCEP) re-analysis dataset that is 

re-gridded to the same coordinate system as the corresponding GCM and normalized with 

respect to their respective 1961-1990 mean; the 26 predictors available are listed in Table 

3.4. 
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Table 3.3: The GCMs and the GHGs scenarios used in the study (Network 2007) 

Official 

name  

Resolution 

(Lon x Lat) 

Grid box centroid 
Scenarios 

Simulation 

type 
Period 

Lon(E) Lat(N) 

CGCM3_1 

 (CGCM3) 

3.75° x 3.75° 35.26° 33.75° 20C3M 

A1B 

A2 

Historical 

Future 

Future 

1961-2000 

2001-2100 

2001-2100 

CanESM2 / 

CGCM4 

(CanESM2) 

2.813° x 2.813° 36.562° 32.091° 20C3M 

RCP2.6 

RCP4.5 

RCP8.5 

Historical 

Future 

Future 

Future 

1961-2005 

2006-2100 

2006-2100 

2006-2100 

 

 

 

Figure 3.5: CGCM3 and CanESM2 data grid boxes that overlaid YRB 
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Table 3.4: List of the predictor variables from NCEP Reanalysis and GCMs datasets 

Predictor 

code 
Description 

Predictor 

code 
Description 

p500 500 h Pa Geopotential height p_th 1000 h Pa Wind direction 

p8_v 850 h Pa Meridional velocity p5_f 500 h Pa Wind speed 

s500 500 h Pa Specific humidity p5_z 500 h Pa Vorticity 

shum 1000 h Pa Specific humidity p8_f 850 h Pa Wind speed 

p5_u 500 h Pa Zonal velocity p5zh 500 h Pa Divergence 

p_u 1000 h Pa Zonal velocity p8_z 85 0 h Pa Vorticity 

p5_v 500 h Pa Meridional velocity p_f 1000 h Pa Wind speed 

s850 850 h Pa Specific humidity temp Screen (2 m) air temperature 

p–v 1000 h Pa Meridional velocity p8zh 850 h Pa Divergence 

p8_u 850 h Pa Zonal velocity p__z 1000 h Pa Vorticity 

mslp Mean sea level pressure p8th 850 h Pa Wind direction 

p850 850 h Pa Geopotential height p_zh 1000 h Pa Divergence 

p5th 500 h Pa Wind direction precp Precipitation 

  

3.2.4 Yarmouk River Discharge Data 

The YR discharge data for the gauging Addasiya station that locates near the 

confluence with the Jordan River (YRB outlet point) (see Figure 3.1) was obtained from 

the Jordanian MWI. The records that had been obtained expanded an interval from 1928 

till 2000. The discharge records from this gauging station almost cannot reflect the prior 

1950s historical flow conditions because of many dams on the Syrian upstream tributaries 

and the shared large Wahdah Dam that opened in 2006 (UN-ESCWA 2013).  

Two types of discharge data were prepared, the first are the observed station data and 

the second are hypothetical discharge data reflect the conditions if no manmade changes 

have occurred. To establish the hypothetical discharge data, the observed discharge date 

from 1928 to 1950 (reflects historical conditions) used to establish a relation between the 

annual rainfall and annual YR discharge. These relations had been used then to extrapolate 

the discharge values beyond the 1950s so can reflect flow regime as if the YRB had 

remained without manmade changes. This is because one of this study aims is to assess 

how manmade changes affect the YRB basin vulnerability to climate change 
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3.2.5 Land Cover and Soil Data 

The YRB basin land cover information was extracted from the 0.5-km representative 

global land cover map that based on 10 years (2001-2010) of Collection 5.1 Moderate 

Resolution Imaging Spectroradiometer (MODIS) Land Cover Type (MCD12Q1) data 

(Broxton 2014).  The land cover map that re-gridded to a regular latitude-longitude grid 

was downloaded from the USGS Land Cover Institute (LCI) website 

(http://landcover.usgs.gov/global_climatology.php). This raster map is classified into 16 

classes namely water, evergreen needle leaf forest, evergreen broadleaf forest, deciduous 

needle leaf forest, deciduous broadleaf forest, mixed forests, closed shrublands, open 

shrublands, woody savannas, savannas, grasslands, permanent wetland, croplands, urban 

and built-up, cropland/natural vegetation mosaic, snow and ice and barren or sparsely 

vegetated (Broxton, 2014).  Those classes should be redefined into SWAT generic land 

covers that defined in SWAT database.  

 

 

Figure 3.6: A map shows the land use within the YRB 

 

http://landcover.usgs.gov/global_climatology.php
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Soil map and its average weighted two layers’ properties were extracted from the 

Food and Agriculture Organization of the United Nations (FAO/UNESCO) Digital Soil 

Map of the World version 3.6 that was released in January 2003. This digital map has a 

coarse scale equal to 1:5000000 and was downloaded from the FAO GeoNetwork website 

which is  http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116. The shallow 

layer depth is 300 mm while the total soil profile depth is 1000mm with average porosity 

of 0.5. Other properties of the FAO soil profile in Yarmouk basin that affect the soil 

moisture content are shown in Table 3.5. 

 

Figure 3.7: A map shows the soil types within YRB based on FAO soil map 

 

Table 3.5: The YRB FAO soils main properties  

Soil class FAO soil class 
Ks* 

mm/hr 

Bulk 

density  

g/cm3 

Hydrologic 

group 

Clay 

% 

Silt 

% 

Sand 

% 

Clay 40% Bv15-3b-3501 1.49 1.6 D 40 33 27 

Loam 37% I-Yk-2ab-3135 4.46 1.4 D 26 37 37 

Loam 47% Kl2-2a-5571 9.21 1.3 C 21 47 33 

Clay_Loam Lk5-3ab-3534 4.18 1.4 D 30 35 35 

Clay 51% Vc46-3a-3560 1.85 1.6 D 51 28 21 

Loam 41% I-Xk-2c-3133 7.66 1.3 D 25 41 34 

* Ks is the saturated hydraulic conductivity (mm/h). 

http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116
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3.2.6 The Dams Data 

Thirty-nine dams were modeled that have been identified to be in operation during 

the study period 1986-2000.  Three of them was Jordanian and their information’s was 

obtained from the Dams Operation and Maintenance Directorate, MWI, Jordan.  The other 

37 Syrian dams physical characteristics and operation was evaluated based on many 

reports such as the basin evaluation report by Al-Momani (1993), ESCWA Inventory of 

Shared Water Resources in Western Asia (UN-ESCWA, 2013) (see 

http://waterinventory.org/surface_water/jordan-river-basin), AQUASTAT - FAO's 

Information System on Water and Agriculture that provides a rich database (see 

http://www.fao.org/nr/water/aquastat/dams/index.stm), the EU-funded Trans-European 

Mobility Program for University Studies (TEMPUS) Study 2005-2006 project report and 

Food and Agriculture Organization (FAO) Syrian water report (Food and Agriculture 

Organization (FAO) 2009). The main dam dates were the year of opening, the principal 

volume, principal surface area, emergency spillway volumes, emergency spillway surface 

area, the uses and how the dam water being consumed generally. the More about the dam’s 

water consummation was evaluated after consulting the Dams Operation and Maintenance 

Directorate in Jordan. The dams’ locations along the main YRB streams are shown in 

Figure 3.8. 
 

 

Figure 3.8: A map showing the main modeled dams in the YRB during the study period 

http://waterinventory.org/surface_water/jordan-river-basin
http://www.fao.org/nr/water/aquastat/dams/index.stm
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3.3 Methodologies 

3.3.1 Data Sets Preparation 

The Jordanian stations’ metrological data series (PRCP, Tmax, and Tmin) were 

examined for its quality and then used to develop daily PRCP series for the 10 Syrian 

stations from their 23 years annual PRCP data from 1960 to 1982. This is necessary 

because the downscaling technique that had been used in the present study requires daily 

scale time series. The following two sections 3.3.1.1 and 3.3.1.2 are going to detail how 

this had been done.  

 

3.3.1.1 Jordanian Data Sets Inspection 

All times series of PRCP, Tmax and Tmin were checked out for outliers and 

distribution normality.  

For daily Tmax and Tmin time series, lag-1 serial correlation coefficient (r1) was 

calculated using Equation (3.1) where 𝑥𝑡 is a variable value in day t (t=1,2,3, 4…n), 𝑥𝑡+1 

is the variable value in next day and �̅� is the variable series mean. This equation is simple 

and suitable when n is large which is the case for the considered time series in the study 

(De Smith 2015). 

 𝑟1 =
∑ (𝑥𝑡 − �̅�)(𝑥𝑡+1 − �̅�)
𝑛−1
𝑡=1

∑ (𝑥𝑡 −
𝑛
𝑡=1 �̅�)2

 (3.1) 

 

Testing autocorrelation presence entail that the computed r1 is between critical upper 

and lower limits that are calculated according to Equation (3.2). If r1 is within the limits, 

then the time series data set has no significant autocorrelation and pattern and it is random. 

 
−2

√𝑛
≤ 𝑟1 ≤

2

√𝑛
 (3.2) 

 

For the PRCP data series, inhomogeneities, data consistency, and abrupt breaks were 

detected using the simple, visual and practical double-mass curve (DMC) analysis. This 

method was used for the first time to analyze PRCP data by Merriam (1937) in the USA 

then later a theoretical explanation of the method was provided by Searcy and Hardison 

(1960). In a DMC analysis, the targeted station cumulative PRCP magnitude is plotted 

against the average of cumulative PRCP of the other stations in the study area during the 

same period. If the plot manifests approximate straight line, the series will be considered 

consistent with minor random errors in data observing or recording. However, notable 

slope change in the plot indicates errors in data and entails adjusting the slope that is 
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evaluated to be wrong. DMC analysis can smooth a time series and eliminate random 

errors, showing the main trends in the time series. In this study, DMC analysis of PRCP 

was performed for each Jordanian station time’s series during the period of the station data 

availability.  

 

3.3.1.2 Developing Daily PRCP Series for Syrian Stations 

There are ten representative rainfall stations in the Syrian part of YRB. Twenty-three 

years’ annual rainfall data from 1960 to 1985 were obtained from the Syrian 

Meteorological Department for these stations. The missing annual PRCP data of Syrian 

rainfall stations for the interval 1986-2000 were estimated using the rainfall data of Jordan 

rainfall stations exist in the YRB. That had been done by coupling similar stations and 

applying “Straight-Line Regression” during the years 1980-1985 in which annual PRCP 

data are available for both Jordanian and Syrian stations. The stations coupling was 

identified after regressing each Syrian station with all the Jordanian stations and then 

selecting the one of the best regression based on the coefficient of determination R2.  The 

Jordanian station that gives highest R2 is the more similar and should be selected.  The 

regression equations were used for the correlated stations, are shown in Table 3.6. After 

that, the modeled Syrian annual PRCP were distributed to the daily scale using the 

assumption that PRCP occurs in same days as the relevant Jordanian station with similar 

day/annual PRCP ratio as the Jordanian station. 

 

Table 3.6: The relevant stations between the Syrian and Jordanian rainfall stations 

Stations Equations Correlation coefficient (R2) 

Izraa' (AD0400) Vs. Turra (AD0021)  y = 0.7852x 0.6921 

Kufr Saum (AD0003) Vs. Nawa (AD0401)  y = 1.1078x 0.608 

Salkhad (F-S1) Vs Um El Quttein (F0001)  y = 1.9489x 0.7506 

Ramtha (AD0012) Vs. Sanamain (AD0403) y = 0.8576x 0.7157 

Shahba (AD0405) Vs. Kharja(AD0008) y = 0.7952x 0.5334 

Turra (AD0021) Vs. Tell Shihab (AD0408) y = 0.7027x 0.699 

Ramtha (AD0012) Vs. Mseifrah (AD0413) y = 0.7729x 0.7707 

Suweida'a (AD0409) Vs. Um Qeis (AD005)  y = 1.2528x 0.7073 

Dara'a (AD0412) Vs. Ramtha (AD0012) y = 1.2868x 0.7686 

Busral Sham (AD0414) Vs. Ramtha (AD0012)  y = 1.2479x 0.629 
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3.3.2 Trend Analysis 

In the present study, two non-parametric methods which are Mann-Kendall and Sen's 

slope estimator were implemented to find out the trends and its significance for annual 

times series of PRCP, Tmax, and Tmin for each Jordanian station. Syrian stations were 

modeled (not observed) as shown in section 3.3.1.2 through the trend study period (1981-

2009) so can’t serve the target of dedication observed trends.  The software XLSTAT 

(Addinsoft™ XLSTAT v. 2014.5.03, Paris, France, 2014) was utilized to execute MK test 

and Sen’s slope test for the time series at a confidence level of 0.05. 

 

3.3.2.1 Mann-Kendall (MK) Trend Test 

Mann-Kendall (MK) test is a premium rank-based non-parametric statistical test for 

climatologic and hydrologic time series trend analysis (Mann, 1945; Stuart, 1968). The 

popularity of MK test stemmed from its suitability in analyzing skewed data distributions 

and its minimal sensitivity to inhomogeneities and outliers in the data series and have been 

used widely for hydro-meteorological time series (Yue, 2002).  However, MK test entail 

independence and randomness in the data series where autocorrelation can mislead by 

detection significant trends though their absence and vice versa. Consequently, 

autocorrelation analysis or serial correlation is a requisite antecedent requirement before a 

climatic trends analysis to detect if an appreciable correlation is existing between a 

variable and itself over successive time intervals (Karmeshu, 2012). Though the time 

series in the study showed no noteworthy autocorrelation,   a modified MK test suggested 

by Hamed and Ramachandra Rao (1998) was implemented for trend analysis in which the 

data ranks autocorrelation is calculating after removing the apparent trend.  

MK test null hypothesis H0 is no trend (i.e., an unchanging climate) while the 

alternative hypothesis H1 assume a trend of changing climate. Briefly, the computations 

begin with calculating the MK test statistic S using Equation (3.3) and (3.4) given an 

ordered temporally equally spaced time series of n data points having values such as 𝑥𝑖 and 

𝑥𝑗 with time points 𝑖 > 𝑗. 

 S =∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)
𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1
  (3.3) 

 sign (xj − xi) = {

+1, if (xj − xi) > 0

0,            if (xj − xi) = 0

−1, if (xj − xi) < 0

 (3.4) 



28 

It’s more indicative to use the standard normal test statistic 𝑍𝑆 instead of the statistic 

S. 𝑍𝑆  is calculated using Equations (3.5) - (3.7). N is the number of data points in the 

series, NS* is the effective number of data points to account for autocorrelation in the data, 

𝑃𝑠(𝑖) is the autocorrelation between the data points ranks for lag i, and P is the maximum 

time lag under consideration. ZS can be positive or negative indicating upward and 

downward trends respectively. The trend analysis had been performed at significance level 

(α) of 0.05, which at, if |ZS|> Z1−α/2., the null hypothesis will be rejected elucidating a time 

series significant trend presence. The value of Z1−α/2 is 1.96 for α=0.05 as obtained from 

the standard normal distribution table. 

 𝑍𝑠 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
, 𝑖𝑓 𝑆 > 0

0,               𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
, 𝑖𝑓 𝑆 < 0

 (3.5) 

 Var [S] =
1

18
[𝑁(𝑁 − 1)(2𝑁 + 5)]

𝑁

𝑁𝑆∗
 (3.6) 

 
𝑁

𝑁𝑆∗
= 1 +

2

𝑁(𝑁 − 1)(𝑁 − 2)
∑ (𝑁 − 𝑖)(𝑁 − 𝑖 − 1)(𝑁 − 𝑖 − 2)𝑃𝑠(𝑖) 

𝑃

𝑖=1
 (3.7) 

 

Yue et al. (2002) investigated the power of MK test for monotonic trends detecting 

in general. They deduced that the test gets very powerful as the trend magnitude get bigger, 

the sample size increases and the data variations decreases. 

 

3.3.2.2 Sen’ Estimator Approach (TSA) 

Inasmuch as trend magnitude (change per unit time) cannot be estimated utilizing 

MK test, non-parametric Sen’s slope estimator statistical test that developed by Sen (1968) 

was chosen for this objective. Trend magnitude estimation using Sen’s slope is considered 

the most powerful; particularly comparing to the classical least-squares method regression 

coefficient. This characteristic is attributed to Sen’s slope estimator trivial sensitivity 

toward outliers or extreme values that exist in the data series. Sen’s slope (Qk) is calculated 

given equally spaced date series in temporal ascending order of n data points using 

Equation 3.8 in which 𝑥𝑖 and 𝑥𝑗 are data values at time points 𝑖 > 𝑗.  

 𝑄𝑘 =
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
 𝑓𝑜𝑟 𝑘 = 1,… ,𝑁 (3.8) 
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The overall N values of Qk where 𝑁 <
𝑛(𝑛−1)

2
 are then ranked in ascending order and 

the median of slope (i.e. Sen’s slope estimator) is calculated using Equation 3.9. After that 

a tow-sided test is applied to the calculated Sen’s slope at 95% confidence interval to 

obtain the lower and upper confidence limits Qmin and Qmax. If the limits have the same 

sign, then Sen’s slope would be statistically different than zero.  

 Qmed = {

Q(N+1)/2               if N is odd

QN/2 + Q(N+2)/2

2
 if N is even

 (3.9) 

 

3.3.3 SDSM Downscaling 

3.3.3.1 SDSM Model Description 

Statistical Downscaling Model version 4.2 (SDSM 4.2) was downloaded freely from 

http://co-public.lboro.ac.uk/cocwd/SDSM/index.html. Daily maximum temperature 

(Tmax), minimum temperature (Tmin) and precipitation (PRCP) (the predictands) were 

downscaled for each station standalone.  The general steps are quality control, data 

transformation, screening of predictor variables, model calibration, weather generation 

(observed predictors), statistical analysis and scenario generation (climate model 

predictors). Among them, screening of predictors is the most central step to obtain the 

least-uncertainties downscaling (Wilby 2002; Huang 2011).  More detailed steps of the 

downscaling process in SDSM are outlined in Figure 3.9. 

SDSM do the temperature modeling with unconditional one step process in which a 

linear regression model is created between daily 𝑇𝑚𝑎𝑥𝑖 or 𝑇𝑚𝑖𝑛𝑖  temperatures and 

predictors ( 𝑃𝑖s) for day i as shown in equations 3.10 and 3.11, where 𝛿 and 𝛾 are linear 

least squares regression parameters while 𝜉 and  are random or modeling errors (Wilby 

1999).  

 𝑇𝑚𝑎𝑥𝑖 = 𝛿0 + 𝛿𝑇𝑇𝑚𝑎𝑥𝑖−1 + 𝛿1𝑃1+…+ 𝛿𝑘𝑃𝑘 + 𝜉𝑖 (3.10) 

 𝑇𝑚𝑖𝑛𝑖 = 𝛾0 + 𝛾𝑇𝑇𝑚𝑎𝑥𝑖−1 + 𝛾1𝑃1+…+ 𝛾𝑘𝑃𝑘 + 𝑖 (3.11) 

 

Precipitation modeling is a conditional process with no autoregression and its 

algorithm is summarized into two steps. At first, a linear regression relation is established 

between observed predictors (NCEP) and precipitation occurrence probability in a day i 

(𝑂𝑖). So 𝑂𝑖  is calculated first using equation (3.12) where ∝𝑖 s are linear least squares 

regression parameters, 𝑃𝑖s are the selected predictors and k is a counter of days. After that, 

http://co-public.lboro.ac.uk/cocwd/SDSM/index.html
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a uniformly distributed random number r (0 < r < 1) that generated using a stochastic 

process is used to determine the weather condition where if 𝑟 ≤ 𝑂𝑖 then the day is wet and 

precipitation happens, otherwise the weather is considered dry (Wilby 1999).  

 𝑂𝑖 =∝0+∝𝑖−1 𝑂𝑖−1 +∝1 𝑃1 +⋯+∝𝑘 𝑃𝑘 (3.12) 

 

In case the precipitation happens, then the second step will be performed in which an 

another linear regression model between daily precipitation amount (predictand) (𝑅𝑖) that 

always greater than zero and the selected predictors (𝑃𝑖)  will be created as shown in 

Equation (3.4) where 𝛽𝑖s are linear least squares regression parameters, 𝑃𝑖s are the selected 

predictors, k is a counter of days and 𝑖 random or modeling error (Wilby 1999). 

 𝑅𝑖 = exp (𝛽0 + 𝛽1𝑃1 +⋯+ 𝛽𝑘𝑃𝑘 + 𝑖 (3.13) 

 

SDSM can produce 20 simulations in a single run with the same probability of 

appearance called together as an ensemble and each simulation is called ensemble member. 
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Figure 3.9: SDSM climate scenario generation general steps (Wilby, 2002) 

 

3.3.3.2 Screening of Predictors 

The procedure to select the relevant predictors (large-scale variables) to the 

predictand (local station variable) was performed using a suggested procedure in the 

literature that combine the correlation matrix, partial correlation, and P value within the 

SDSM that found to have a significant enhanced effect on the model’s performance 

(Gagnon, 2005; Huang, 2011; Mahmood, 2013).  The screening steps start with selecting 

the first and most suitable large-scale variable and then selecting the second, third, fourth, 

and so on such that the predictors are not collinear and still have significant effect on the 



32 

model parameters, the procedure with minor modification is as follow and was performed 

at confidence level of 95%: 

1. Generate a correlation matrix between the 26 NCEP predictors and the predictand, 

and then the 12 predictors (SDSM matrix limit of predictors) with the highest 

correlation coefficient (rc) with the predictand are selected and re-arranged in 

descending order. The predictor with the highest rc is defined as the super predictor 

(SP).  

2. Generate rc between the predictor and predictand, absolute partial correlation 

coefficient (rp) and P value by regressing the 12 predictors to the predictand. 

3. Remove first the predictors of P value greater than 0.05 so leaving the statistically 

significant predictors and then remove the highly correlated predictors to leave out 

any multi-co-linearity. In the present study, rc between predictors up to 0.7 was 

accepted as suggested by Pallant (2007). After this step, a set of predictors with the 

highest partial correlation is left. If the set is with a number up to 6 predictors, the 

set will be chosen as a final set (Souvignet, 2011), otherwise, step 4 is performed. 

4. Determine the next super predictor using the percentage reduction in an absolute 

partial correlation (PRP) with respect to absolute correlation for each predictor 

using Equation (3.14), where 𝑟𝑝 is the absolute partial correlation coefficient and rc 

is the correlation coefficient between the predictor and the super predictor (SP). The 

predictors of the minimum PRPs are selected as the most suitable predictors. 

 𝑃𝑅𝑃 =
𝑟𝑝 − 𝑟𝑐

𝑟𝑐
 (3.14) 

 

3.3.3.3 SDSM Calibration and Validation  

The observed PRCP, Tmax and Tmin (predictands) and the selected NCEP 

predictors were used to calibrate the monthly downscaling sub-models for each predictand 

at each station for both GCMs. According to the common time series length of the 

predictands between the stations (1981-2009) and the common NCEP time series length 

between the GCMs (1961-2000), the calibration was chosen to be 15 years (1/1/1981-

31/12/1995) and validation is 5 years (1/1/1996–31/12/2000) for comparison purposes. 

Tmax and Tmin sub-models were unconditional and not transformed because it is 

normally distributed and 1-day lag had autoregressived since its data series are 

autocorrelated (Wilby, 2002). PRCP sub-models were conditional and transformed to the 
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fourth root because of its skewed distribution (Wilby, 2002). For the conditional process, 

wet day is defined when the precipitation amount is 0.1mm or more as recommended for 

arid or semi-arid climates by Liu et al. (2011) after downscaling using several wet day 

thresholds. To overcome SDSM overflow error from popping out when to calibrate at 

monthly scale because the summer months (June, July, August, and September) are of zero 

PRCP in the YRB, the summer months were filled with fake trivial amounts. Then the 

summer months’ models parameters in the calibration files had been reset to zero manually. 

SDSM had been run to produce 20 simulations (ensemble number), then one ensemble 

member was used for the later downscaling performance evaluation because it will have 

more similar characteristics to the actual time series. 

The models were evaluated in the validation period using commonly used measures 

which are time series plots, the Pearson’s coefficient of determination (R2) and root mean 

square error (RMSE) for mean monthly Tmax and Tmin and PRCP monthly sum. R2 

quantify variability proportion within the observed data accounted for the modeled data 

while RMSE quantifies the model errors between the observed and modeled time series. 

R2 and RMSE were calculated using Equation (3.15) and (3.16) respectively; where  𝑥𝑖 is 

the observed variable in day i, 𝑥𝑖́  is the molded variable in day i, 𝑥 in the observed variable 

time series mean and n the total number of values in the time series. RMSE ranges 

between zero 0 (perfect model) and infinity while R2 ranges between 0 and 1(perfect 

model) (Maidment, 1992).  

 𝑅2 = 1 −
∑ 𝑥𝑖 − 𝑥𝑖́
𝑛
𝑖

∑ 𝑥𝑖 − 𝑥
𝑛
𝑖

 (3.15) 

 𝑅𝑀𝑆𝐸 =
√∑ (𝑥𝑖 − �́�𝑖)2

𝑛
𝑖

𝑛
 (3.16) 

 

In addition, its ability to simulate mean and extreme climate conditions was 

evaluated by comparing mean climate indices versus extreme climate indices that shown in 

Table 3.7. The mean indices were selected mostly as recommended by Maraun et al. 

(2010).  The extreme indices were selected from the 27 core indices that the World 

Meteorological Organization Joint Expert Team on Climate Change Detection and Indices 

(ETCCDI) promoted for climate extremes analysis around the world (see 

http://etccdi.pacificclimate.org/indices.shtml for detailed information) (Peterson, 2008).  

 

http://etccdi.pacificclimate.org/indices.shtml
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Table 3.7: Evaluation indices of mean and extreme events 

 Index full name Index short name Unit 

Precipitation mean indices Mean precipitation sum Mean_PRCP mm 

 Mean dry spell length Dry_spell days 

 Mean wet spell length Wet_spell days 

 Percentage of wet 

days(>0.1mm) 

Wet_days % 

Precipitation extreme 

indices 

Monthly maximum consecutive 

5 days’ precipitation 

Rx5day mm 

 Maximum length of dry spell Max_dspel days 

 Maximum length of wet spell Max_wspel days 

Temperature mean indices Mean daily maximum 

temperature 

Mean_Tmax oC 

 Mean daily minimum 

temperature 

Mean_Tmin oC 

Temperature extreme 

indices 

Monthly maximum value of 

daily maximum temperature* 

Max_Tmax oC 

 Monthly maximum value of 

daily minimum temperature* 

Max_Tmin oC 

 Monthly minimum value of 

daily maximum temperature** 

Min_Tmax oC 

 Monthly minimum value of 

daily minimum temperature** 

Min_Tmin oC 

*Warm extremes indices, **Cold extremes indices 

 

In order to investigate the ability of the models to simulate extreme events at various 

return period comparing to the observed extremes events, frequency analysis was 

performed in which statistical distribution is fitted to observed and modeled data. For our 

study of extremes, the generalized extreme value (GEV) distribution was the most suitable 

that is calculated using Equation (3.17); where x is the predictand value and ξ, β and k are 

location, scale and shape parameters respectively which are calculated from the predictand 

data series (Souvignet 2011).  

 𝐹(𝑥) = 𝑒𝑥𝑝{−𝑒𝑥𝑝 [
−(𝑥 − 𝜉)

𝛽
]

1
𝑘

} (3.17) 
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3.3.3.4 Uncertainty Analysis  

The aim of uncertainty analysis is to investigate the GCMs predictors’ ability to 

regenerate the current climate state to build confidence in the GCMs future climate 

scenarios (Khan, 2006). The total 20 years of the observed meteorological variables (1981-

2000) was used as a baseline scenario. The downscaled current climate using GCMs 

predictors was generated by a twentieth-century experiment (20C3M) which is usually 

called the historical scenario which corresponds to a greenhouse gasses change as 

observed up to 2000 (Hegerl, 2003).  

In addition to the same measures that have been used and explained in detail in 

section 3.2.2.3, Mann-Whitney (MW) hypothesis test was performed on mean monthly 

Tmax and Tmin and PRCP sum.  The Mann–Whitney (MW) is powerful non-parametric 

hypothesis test seeks the equality of median between two populations (Mann, 1947). MW 

test null hypothesis H0 is that the median between two populations is equal while the 

alternative hypothesis H1 assume the opposite. As other non-parametric tests, MW tests is 

insensitive to outliers, distribution normality and autocorrelation because its theory states 

that ranks sum (instead of variable amount) above and below the median should be the 

same to accept the null hypothesis. For a significance level of α (0.05 used in the present 

study), If p>α then the null hypothesis is accepted with 1-α% (95% in the present study) 

confidence that there is no difference between the two population medians. The test was 

performed using XLSTAT software (Addinsoft™ XLSTAT v. 2014.5.03, Paris, France, 

2014).  

 

3.3.3.5 Future Climate Change Scenarios Generation 

Future modeled local-scale predictand (PRCP, Tmax, and Tmin) were generated for 

CGCM3 and CanESM2 GCMs under the climate change scenarios that were mentioned in 

Table 3.3 along the 21st century (2006-2100). The PRCP percentage difference, mean 

Tmax and Tmin absolute difference and frequency were calculated for three future time 

periods of approximately thirty years which are the 2020s (2011-2040), 2050s (2041-2070) 

and 2080s (2071-2099). 

All evaluation measures mentioned throughout the downscaling validation and 

uncertainty analysis were performed for each predictand at each of the 28 station for both 

GCMs to consider the surface and climate conditions spatial differences between the 

stations and then averaged to represent the general downscaling performance. All 

measures were averaged normally by summing the values and then dividing by its number 
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except those measures of PRCP amount which were averaged instead by Thiessen 

polygons method. Thiessen polygons is areal averaging method in which at first lines 

between the stations is drawn and then divided by other lines that define the influence area 

of each PRCP station so the averaging then is calculated using the ratio of the influence 

areas (subbasins) to the total basin area as Equation (3.18) states; where 𝑃𝑅𝐶𝑃  is the 

average PRCP over the basin, 𝐴𝑇 is basin total area, 𝐴𝑖 is subbasin area, j is station counter 

and m is the total number of stations  (Thiessen, 1911). The Thiessen polygons network 

that cover the whole YRB is shown in Figure 3.10.  

 𝑅𝐴 =∑
𝐴𝑖
𝐴𝑇
𝑅𝑖

𝑚

𝑗

 (3.18) 

 

 

Figure 3.10: Thiessen polygons network for the whole YRB 

 

3.3.4 SWAT Hydrologic Modeling  

3.3.4.1 Hydrologic Model Description 

The Soil and Water Assessment Tool (SWAT) is a process based distributed model 

that has been developed by the US Department of Agriculture–Agricultural (USDA) 

Research Service (USDA–ARS). SWAT enable performing long continuous-time, 

spatially distributed modeling of a basin hydrologic cycle and its water quality at even 
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daily time step. This is, in turn, would help water-resources managers to evaluate 

management approaches in large river watersheds (Arnold, 1998). SWAT divide a basin 

into subbasins each with the main channel and then the subbasins are furthermore divided 

into homogenous units in terms of land use, soil and slope called hydrological response 

units (HRUs). SWAT model building unit HRU water balance budget compromise five 

components which are canopy interception, snowfall, soil profile, shallow aquifer, and 

deep aquifer. Simulation of basin hydrologic response is separated into two phases: land 

and in-stream. In the land phase, the HRUs generate flows that then aggregated via 

weighted average across its containing subbasin. In the in-stream phase, those flows let to 

be routed through channels, ponds, and/or reservoirs till the outlet of the basin (Arnold, 

1993; Arnold, 2012; Ficklin, 2009). SWAT entail four spatial input dataset which are 

Digital Elevation Model (DEM), Land use/Land cover, soil, and basin/subbasin outlets 

discharges and/or quality data. The model has been used in several large area projects by 

EPA, NOAA, NRCS and others to estimate the climate and management impacts on water 

use, non-point source loadings, and pesticide contamination (Arnold, 1998). Moreover, 

Most studies involved SWAT demonstrated its capability of providing realistic watershed-

scale analysis over diverse small and large watersheds and its accuracy depending upon the 

data availability (Jha, 2004). The hydrologic cycle in SWAT is based on the following 

water balance (equation) in which 𝑆𝑊𝑓 is the final soil water content, 𝑆𝑊𝑜 is the initial soil 

water content, t is the simulation period (days), 𝑅𝑖  is the precipitation, 𝑄𝑠𝑢𝑟𝑓 is surface 

runoff, 𝐸𝑎 is evapotranspiration, 𝑊𝑑𝑒𝑒𝑝 is deep aquifer recharge and 𝑄𝑔𝑤 is the return flow 

where all these hydrologic processes are calculated on each day i and have the unit of 

mmH2O (Githui, 2009).  

 𝑆𝑊𝑓 = 𝑆𝑊𝑜 +∑𝑅𝑖 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 −𝑊𝑑𝑒𝑒𝑝 − 𝑄𝑔𝑤

𝑡

𝑖=1

 (3.19) 

 

In this study, a solely hydrologic response modeling of the YRB using SWAT model 

has been conducted at monthly time step driven by the downscaled 21st-century climates 

for predevelopment conditions (i.e. before the 1950s) and post-development conditions.  
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3.3.4.2 Setting up SWAT 

 The simulation of the YRB hydrology that forced under the projected climate 

change has been evaluated for two different conditions during the study period from 1981 

to 2000: 

(1) Pre-development conditions: These are notional conditions and assume there has 

been no substantial human intervention alters the YRB historical hydrology and 

water circulation. In reality, the basin has remained under its historical conditions 

until the 1950s, where the communities were still small, and their normal lifestyle 

was either nomadic or simple peasant (Burdon, 1954). After the 1950s, the 

communities have started turning into urban communities experiencing high 

population growth and rapid economic development rates. In summary, these 

conditions assuming that the basin remained the same and has no expansion of 

urbanization, agriculture, dams’ construction, harvesting systems and water 

diversion. Under these conditions, the hydrologic simulation should match as 

possible the YRB historical hydrologic water cycle as was evaluated by Burdon, 

(1954). 

(2) Post-development conditions:  These conditions represent the real changes in YRB 

because of human intervention that affected the basin hydrologic water cycle. The 

main changes that have been simulated included the main dams, water harvesting 

and patterns of agriculture through the basin. Under these conditions, the 

hydrologic water cycle simulation should match as possible what have been 

observed during the study period.  

The goal of simulating the basin under both pre-development and post-development 

conditions is to evaluate how manmade changes affect the basin vulnerability to climate 

change. 

 

3.3.4.2.1 Pre-Development Conditions  

The YRB was divided into 25 subbasins that delineate the river attributes valleys that 

most of them are dry except in the rainy season and then was further divided into 531 

HRUs.  Partitioning into surface runoff and infiltration was quantified using a modification 

of the SCS curve number method and variable storage method was used to route water 

through the basin. Hargreaves method was used to calculate the evapotranspiration which 

driven by daily climate input data series for precipitation and maximum/minimum air 
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temperature. SWAT assign automatically the nearest precipitation and temperature station 

to a subbasin centroid. Each run included 5 years of warming up to make the model able to 

capture the hydrological water cycle adequately before starting calculating various 

hydrological quantities. In addition, other climate information including wind speed, solar 

radiation and dew-point were generated from weather generator using monthly values from 

the nearest standardized weather station to be used if needed. 

 

3.3.4.2.2 Post-Development Conditions  

Thirty-nine dams were modeled after had been identified to be in operation during 

the study period 1986-2000. The basin was divided into 47 subbasins that drain the dams 

subbasins and the river main attributes valleys and then was further divided into 731 HRUs. 

Surface runoff and evapotranspiration were calculated using a modification of the SCS 

curve number method and Hargreaves method respectively. Water routing through 

channels was evaluated using the Muskingum Method. The irrigation timing and 

application amount in an HRU had been scheduled automatically by SWAT in response to 

water deficit in the soil.  The specified sources of the irrigation water were either the dams 

or the shallow aquifer.   

 

3.3.4.3 Calibration, Validation and Sensitivity Analysis 

Calibration is a subjective process that is linked intimately to the uncertainties and 

no unique calibration can be obtained. The prime issues related to calibration of distributed 

model specifically are parametrization, objective function definition, non-uniqueness 

(uncertainty), parameter conditionality, positioning observed outlets and time constraint 

(Abbaspour, 2007). Generally, the requirement of a calibrated watershed model to do 

climate change analysis is the model be able to simulate the dominant hydrologic 

processes and their interactions as simply and realistically as possible (Arnold, 2005).   

In this study, a process-based calibration for the basin hydrological processes has 

been performed for both pre-development (the natural historical conditions) that had been 

prevailing the basin till the 1950s (Burdon, 1954) and post-development conditions. The 

SWAT processes of the hydrological water balance in the watershed involve surface runoff, 

ET, lateral flow, return flow, tile flow (if present), channel transmission losses, and deep 

aquifer recharge. Hence, an actual physical knowledge of the watershed before calibration 

is an indispensable matter (Arnold, 2012). Burdon (1954) had already quantified the 

Yarmouk basin water balance processes through an intensive field and office research 
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using comprehensive field data sources including runoff gauges, 172 spring gauges, 

rainfall maps, 77 boreholes as well as the most accurate geology and soil maps available at 

the time. Burdon investigation had quantified the basin water balance ratios as follow: 0.81 

ET/precipitation, 0.1 infiltration/precipitation (0.02 lateral flow and 0.08 return flow after 

percolation) and 0.09 surface runoff/precipitation. The historical annual streamflow used 

to be 450-500 MCM that is partitioning into 0.55 baseflow and 0.45 surface runoff. 

Burdon depiction of the general hydrological cycle of the whole basin is shown in Figure 

3.11 in which he had summarized different processes quantities. The calibration had been 

implemented into two procedures; first manual calibration procedure and second 

automated procedure for a single outlet model at the Addasiya station that is located near 

the confluence with the Jordan River (YRB outlet). The single outlet calibration approach 

was demonstrated by Niraula et al. (2015) to be significantly indifferent from spatially-

calibrated (SC) models (using multiple stations) for analyzing the streamflow absolute and 

relative changes under climate change scenarios. 

 

 

Figure 3.11: General hydrological cycle of the historical YRB  (Burdon 1954) 

 

The manual calibration is to initially parameterize the model based on the available 

data, literature, and analyst’s expertise to achieve as a possible match in water balance 

ratios and quantities. At first, the curve number (CN2) had been adjusted till satisfactory 

runoff/precipitation ratio was achieved. Afterward, the soil evaporation compensation 

factor (ESCO), depth from soil layer 2 surfaces to the bottom (SOL_Z2) and soil available 

water capacity (SOL_AWC) as well as the Groundwater revap coefficient (GW_REVAP) 

were adjusted to obtain satisfactory ET/precipitation ratio. The groundwater delay 
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(GW_DELAY) was then adjusted to match the observed flow regime as possible, 

especially the dry months’ baseflow.  Finally, the high unreasonable peaks in the simulated 

flow regime were reduced by increasing the channel hydraulic conductivity (CH_K2) and 

the baseflow alpha factor (ALPHA_BF) till peaks become reasonable. The model which 

had been obtained after finishing the manual calibration was used as default input model 

for the automated procedure. This default model had been assured to be not drastically 

different from the observed because it was demonstrated that automated calibration will be 

of little help for poor default models (Abbaspour, 2015). 

The automated procedure is to adjust the parameters within realistic uncertainty 

ranges iteratively between autocalibration runs as well as to provide parameter sensitivity 

analysis and goodness-of-fit statistics. The automated calibration used the Sequential 

Uncertainty Fitting (SUFI2) procedure in the decision-making framework calibration, 

validation, sensitivity, and uncertainty analysis software SWAT-CUP that was developed 

by the Swiss Federal Institute of Aquatic Science and Technology Eewag (Abbaspour, 

2007). SUFI2 compromise various uncertainties such those related to a parameter, 

conceptual model, and input via encompassing the observed data as possible into the 95% 

prediction uncertainty (95PPU) that is calculated at the 2.5% and 97.5% levels of the 

output variable cumulative distribution. P-factor and R-factor are the indices SUFI use to 

evaluate the goodness of fit between the model simulation 95PPU band and observed date 

plus its error band. The P-factor that is varying between 0 and 1 (perfect model) indicates 

the percentage of observed data plus its error that is bracketed by the 95PPU band 

simulation. on the other hand, the R-factor - that is ranging from 0 (perfect model) to ∞ - 

measures the ratio between 95PPU band average width and the observed variable standard 

deviation. For stream discharge modeling, P-factor >0.7 and R-factor < 1.5 is considered 

satisfactory but those are subjective criteria depending on the watershed and the study 

conditions and a balance should have obtained between them because higher P-factor can 

lead to higher R-factor. After several iterations, one should achieve the best R-factor and 

P-factor at which the resulted new parameter ranges will be taken as the calibrated 

parameters. SUFI-2 provides ten objective functions to be employed as targets during the 

iterative calibration (Abbaspour, 2015). Four objective functions had been selected for 

model uncertainty evaluation which is Nash-Sutcliffe efficiency (NSE), percent bias 

(PBIAS), ratio of the root mean square error to the standard deviation of measured data 

(RSR) as well as the common statistic coefficient of determination (R2). Those objective 

functions have been recommended by Moriasi et al. (2007) after their profound and 
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comprehensive review of the model application and evaluation methods in the literature. 

They recommended NSE ≥ 0.50, RSR ≤ 0.70, and PBIAS ≤ ±25% to consider a stream 

discharge modeling satisfactory. The calibrated parameters were then validated with an 

independent set of data during a 5 years’ period from 1996 to 2000 without further changes 

to the parameters. The following equations indicate how NSE, RSR, and PBIAS are going 

to be calculated in which 𝑄𝑖
𝑜𝑏𝑠  is the observed discharge on day i (m3/s),  𝑄𝑖

𝑠𝑖𝑚  is the 

simulated discharge in day i (m3/s) and 𝑄𝑚𝑒𝑎𝑛 is the observed discharge mean value (m3/s). 

 𝑁𝑆𝐸 = 1 −
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

 (3.19) 

 𝑃𝐵𝐼𝐴𝑆 =
∑ (𝑄𝑖

𝑜𝑏𝑠 − 𝑄𝑖
𝑠𝑖𝑚) ∗ 100𝑛

𝑖=1

∑ 𝑄𝑖
𝑜𝑏𝑠𝑛

𝑖=1

 (3.20) 

 𝑅𝑆𝑅 =

√∑ (𝑄𝑖
𝑜𝑏𝑠 − 𝑄𝑖

𝑠𝑖𝑚)2𝑛
𝑖=1

√∑ (𝑄𝑖=1
𝑜𝑏𝑠 − 𝑄𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

 (3.21) 

 

After the automatic calibration, for only the post-development conditions, a 

remaining tuning of the flow regime has been performed by adjusting the dams average 

daily consumptive use parameters (WURESN), the number of days required to release any 

water surplus from a reservoir (NDTARGR) and the maximum average daily outflow for 

the month (OFLOWMX) for each dam. 

The sensitivity method that had been used in this study is the global sensitivity 

analysis that was introduced by Van Griensven et al. (2006). This method combines a 

Latin-hypercube and one-factor-at-a-time sampling methods that also has been adopted for 

calibration and sensitivity analysis tool SWAT-CUP. 
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Chapter Four: Precipitation and Temperature Trend Detection 

One of the essential steps in the climate change impact studies is the analysis of 

trends in the available records of climatological data for the selected stations. However, 

before the trend analysis, the data quality and characteristics have to be checked 

thoroughly. In addition, the knowledge of autocorrelations will be of great benefit when 

setting the downscaling model for PRCP, Tmax, and Tmin. Therefore, this Chapter has 

been devoted to present the autocorrelation, DMC as well as the trend analysis results for 

the annual PRCP, Tmax and Tmin time data series of the metrological stations within the 

YRB.  

 

4.1 Annual PRCP, Tmax and Tmin Autocorrelation 

Inasmuch the non-parametric MK trend test and Sen’s slope perform powerfully if 

the time series itself is independent (no pattern and random), autocorrelation analysis was 

performed for the Jordanian stations so can build more confidence in the resulted trends 

(Mann, 1945; Gocic, 2013). Lag-1 serial correlations (correlation of variable with itself 

day ago) plots for annual PRCP (23 stations), Tmax (5 stations) and Tmin (5 stations) 

between 1981 and 2009 are depicted in Figure 4.1.  

PRCP showed no significant and almost negative autocorrelation at 85% of the 

stations because lag-1 serial correlation coefficient (r1) lies within its upper and lower 

limits at 0.05 significance level. Consequently, enough confidence can be dragged in the 

PRCP data series independency. This will, in turn, make the trend statistical tests able to 

give results at the lowest possible uncertainties for PRCP time data series.  

In general, Tmax and Tmin data series showed positive autocorrelations (upward 

influence on itself over time). Tmax showed the strongest autocorrelation; almost all the 

stations have or close to have significant autocorrelations. Tmin has accompanied with no 

significant autocorrelations at all. This may lead to some extent to generate some 

uncertainty in the results of trend statistical tests for Tmax time data series.   
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Anyway, the statistical tests MK and Sen’s slope were applied so as to be able to 

remove or reduce any apparent autocorrelations. 

 

Figure 4.1: The lag-1 serial correlation coefficient (𝑟1) and its upper and lower limits of 

the confidence interval at 0.05 significance level for annual PRCP, Tmax and Tmin (1981-

2009) 

 

4.2 Double-Mass Curve Analysis for Daily PRCP 

Input good quality of the climate variables data series can reduce uncertainties within 

the climate change impact studies substantially (Prudhomme, 2009). Therefore, all PRCP, 

Tmax, and Tmin daily records were extensively examined for consistency and outliers and 

to fill any missing day by averaging the previous and next day. In addition to that, in order 

to get better PRCP time series, inhomogeneities (abrupt change) were analyzed using the 

double mass curve (DMC) method.  

The double-mass fit curves (Figure 4.2) that obtained from the DMC analysis 

showed consistent close relationships without substantial slope alterations for the 13 

Jordanian rainfall stations. These results indicate minor errors in site recording methods 

and in the data processing for precipitation records. This indicates that the rainfall stations 

data across the YRB can be considered consistent. In addition, this supports the same 

finding for whole Jordan after a DMC analysis had been performed for 13 meteorological 
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stations distributed across the country by Dahamsheh and Aksoy (2007) in order to analyze 

the structure of annual precipitation data. 

 

Figure 4.2: Double-mass curves (DMCs) of accumulative PRCP for the Jordanian stations 
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4.3 Trends in PRCP, Tmax, and Tmin 

The resulted normalized MK test statistic ZS (a measure of the significance of trend) 

and Sen's slope estimator Qmed (a measure of the trend magnitude) are presented in Table 

4.1 and Table 4.2 to identify monotonic upward or downward trends in annual PRCP, 

Tmax and Tmin data series between 1981 and 2009 (20 years) at each station. 

In general, PRCP showed no significance downward trends (negative ZS) for the 

majority of the stations of an average magnitude of -0.70 mm/year. In particular, Baqura 

(27 years) and Irbid (using its longest record of 70 years) trends were detected previously 

using 7 statistical tests by Hamdi et al. (2009).  Their results are in agreement for Baqura 

station but indifferent for Irbid station that showed an insignificant downward trend. 

Therefore, it can be reported with confidence that annual PRCP in YRB has no significant 

apparent downward trend and fluctuates between dry and wet years. Tmax showed upward 

significant trends at 4 of the 5 stations of average magnitude 0.04oC/year while Tmin 

showed almost no significant trends of 0.02oC/year. Baqura and Irbid annual Tmax and 

Tmin trends in the study of Hamdi et al. (2009) were also in agreement. Therefore, it can 

be reported with confidence that annual Tmax has significant warming trend while Tmin 

has an insignificant warming trend.  

For the longest record at Irbid station, the natural variability is plotted for mean 

annual PRCP (Figure 4.3), Tmax (Figure 4.4) and Tmin (Figure 4.5). The plots clearly 

show that there is a downward trend in rainfall and an upward trend in temperature. 

 

Table 4.1: MK statistic measure ZS and Sen's slope estimator Qmed (mm/year) for PRCP 

Station Test Annual PRCP Station Test Annual PRCP 

Baqura  ZS -0.533 Jaber Mughayyir ZS 1.734 

 
Qmed -1.662 

 
Qmed 4.847 

Um Qeis ZS -0.731 Hosha ZS 0.459 

 
Qmed -1.701 

 
Qmed 0.254 

Kufr Saum ZS -0.929 Husn ZS -1.561 

 
Qmed -4.393 

 
Qmed -4.732 

Kharja ZS -0.059 Mafraq Airport ZS -1.146 

 
Qmed -0.6 

 
Qmed -1.184 

Turra ZS -0.119 En Nueyima ZS -0.532 

 
Qmed -0.482 

 
Qmed -1.184 

Ramtha ZS -0.457 Khanasira ZS -0.31 

 
Qmed -0.926   Qmed -0.676 

Irbid Rainfall ZS -2.174* 
   

 
Qmed -2.269* 

   
* Statistically significant trends at 0.05 significance level (|ZS|> 1.96) 
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Table 4.2: MK statistic measure ZS and Sen's slope estimator Qmed (oC/year) for Tmax 

and Tmin 

Station Test 
Annual Trends 

Tmax Tmin 

Baqura ZS 2.150* -0.722 

 Qmed 0.026* -0.010 

Samar ZS 3.497* -0.257 

 Qmed 0.066* -0.003 

Irbid ZS 3.877* 4.601* 

 Qmed 0.038* 0.04* 

Um El-Jumal ZS -1.716 -1.901 

 Qmed -0.022 -0.035 

Ras Muneef ZS 2.382* 0.957 

 Qmed 0.028* 0.012 

* Statistically significant trends at the 5% significance level (|ZS|> 1.96). 

 

 

 

Figure 4.3: 70 years’ records of PRCP at Irbid station  
 

 

 

 

Figure 4.4: 37 years’ records of Tmax at Irbid station 
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Figure 4.5: 37 years’ records of Tmin at Irbid station 
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Chapter Five: Downscaling and Scenarios Projection 

This chapter introduces the SDSM skill in downscaling PRCP, Tmax, and Tmin for 

the semi-arid YRB basin using CGCM3 and CanESM2 GCMs. In addition, the chapter 

presents the projected climate changes using the downscaled models.  

 

5.1 Downscaling Using SDSM   

5.1.1 Screening NCEP Predictors 

The selection of the most relevant predictors is the highest-impact and challenging 

step when downscaling a predictand using SDSM (Wilby, 2007). In this study, the 

screening took into account the results of the statistical tests for the evaluation of 

predictand-predictors relationships and the physical meaningful relationships. The 

predictors choice has varied from station to another either due to the characteristics of the 

large-scale atmospheric circulation and/or the local station characteristics. Both CCCma 

GCMs of different generations gave almost the same predictors.  Moreover, for the same 

predictand, most of the stations relied on the same relevant predictors. For the station-scale 

PRCP, the screening showed that 10 of the available 26 NCEP predictors are the most 

relevant with a confidence level of 95%. The number of the screened predictors were 

between two and seven for each station. Summary of the relevant predictors and the 

frequency of being selected for the rainfall stations is shown in The predictors screened for 

daily PRCP are almost in agreement with predictors selected under similar semi-arid 

climate by Cavazos and Hewitson (2005) and Anandhi et al. (2008). 

 

Table 5.1. The highest influential predictor (super predictor) was either the 850 h Pa 

or 500 h Pa geopotential heights (p850 or p500) having linear correlation coefficients (rc) 

between 0.12 and 0.31 with the PRCP.   The other influential significant predictors with no 

appreciable collinearity were 1000 hPa vorticity (p_z), 500 hPa vorticity (p5_z), mean sea 

level pressure (mslp), 1000 hPa wind speed (p_f), 1000 hPa meridional velocity (p_v), 

zonal velocity (p_u) and 500 hPa specific humidity (s500). These high-pressure predictors 

were expected due to the strong physical relationship between high-pressure systems and 

YRB hot Mediterranean/ dry-summer subtropical climate (Kottek, 2006). Grid box PRCP 
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predictor (prcp) was found to have very low correlation with the local-scale PRCP in spite 

of the expected meaningful physical relationship.  

The predictors screened for daily PRCP are almost in agreement with predictors 

selected under similar semi-arid climate by Cavazos and Hewitson (2005) and Anandhi et 

al. (2008). 

 

Table 5.1: List of the screened predictors from NCEP and frequency of getting selected 

among the 23 rainfall stations 

CGCM3 CanESM2 

Predictor code Frequency Predictor code Frequency 

p850 13 p850 17 

p_z 11 p1_z 13 

mslp 11 prcp 11 

p_f 10 s500 10 

p_u 10 p1_f 10 

p500 10 p1_u 10 

p_v 9 p1_v 9 

p5_z 9 p5_z 9 

s500 8 p500 7 

prcp 2 mslp 6 

 

Two to four predictors were screened for daily Tmax and Tmin at each station. The 

super predictor is the 2m air temperature (temp) that reflect the strong physical relationship 

as seen in Table 5.2. The linear correlation coefficient (rc) between the daily observed 

Tmax and Tmin and the predictor temp ranged from 0.86 up to 0.95.  In addition, 500 hPa 

vorticity (p5_z), 500 hPa specific humidity (s500) and 500 hPa wind speed were of 

significant influence with no collinearity with the super predictor temp. Those selected 

predictors are almost similar to many studies for downscaling temperature for such semi-

arid climate including Toews and Allen (2009); Souvignet and Heinrich (2011) and 

Abbasnia and Toros (2016). 
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Table 5.2: List of the screened predictors from NCEP and frequency of getting selected in 

the 5 Tmax and Tmin stations 

CGCM3 CanESM2 

Tmax Tmin Tmax Tmin 

Predictor 

code 
Frequency 

Predictor 

code 
Frequency 

Predictor 

code 
Frequency 

Predictor 

code 
Frequency 

temp 5 temp 5 temp 5 temp 5 

p5_z 4 s500 2 s500 3 s500 3 

s500 2 p8_v 2 p5_f 2 p5_f 1 

p–v 2 p5_v 1 p8_v 1   

p8_u 2 p8_u 1 p5_v 1   

p_f 2 p5_z 1     

p8_v 1 p_f 1     

p8zh 1       

 

5.1.2 Calibration  

The coefficient of determination (R2) and the standard error (SE) at daily scale 

(calculated directly by SDSM) were used as indicators during calibration for performance 

check. The means of those indicators among the stations for PRCP, Tmax and Tmin are 

shown in Table 5.3. Both CGMs provided almost analogous power in downscaling at daily 

scale. PRCP was poorly modeled at a daily scale where annual R2 ranged 0.50-0.02 with a 

mean of 0.19. Temperature calibration showed good performance given the obtained 

annual ranges of 0.78-0.57 for R2 and 2.56-1.94oC for SE among the stations. However, 

those results indicate the low SDSM capability of modeling PRCP comparing to the 

temperature at daily scale. 
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Table 5.3: Coefficient of determination (R2) and the standard error (SE) of the calibrated 

model at daily scale 

 

CGCM3 CanESM2 

PRCP Tmax Tmin PRCP Tmax Tmin 

R2 
SE 

(mm/d) 
R2 

SE 

(oC) 
R2 

SE 

(oC) 
R2 

SE 

(mm/d) 
R2 

SE 

(oC) 
R2 

SE 

(oC) 

Jan 0.13 0.42 0.62 1.96 0.40 2.14 0.13 0.42 0.64 2.06 0.40 2.14 

Feb 0.15 0.40 0.68 2.23 0.36 2.30 0.13 0.40 0.59 2.41 0.37 2.28 

Mar 0.17 0.38 0.66 2.49 0.47 2.64 0.13 0.39 0.68 2.75 0.47 2.63 

Apr 0.26 0.36 0.73 2.60 0.47 3.27 0.25 0.35 0.69 2.85 0.48 3.24 

May 0.55 0.34 0.69 2.49 0.28 3.12 0.70 0.28 0.46 2.51 0.28 3.11 

Jun - - - - - - - - - - - - 

Jul - - - - - - - - - - - - 

Aug - - - - - - - - - - - - 

Sep - - - - - - - - - - - - 

Oct 0.29 0.27 0.73 2.02 0.33 2.81 0.29 0.28 0.75 2.21 0.34 2.78 

Nov 0.14 0.42 0.78 1.93 0.21 2.54 0.15 0.42 0.64 2.06 0.27 2.43 

Dec 0.22 0.40 0.69 2.01 0.34 2.16 0.19 0.41 0.65 2.17 0.33 2.19 

Annual 0.19 0.38 0.70 2.18 0.37 2.55 0.18 0.38 0.59 2.36 0.38 2.53 

 

5.1.3 Validation Using NCEP Predictors 

NCEP predictors that re-gridded according to the corresponding GCM resolution are 

used to calibrate the SDSM. After that, the calibrated GCMs predictors are used to force 

SDSM for downscaling the climate variables of interest. To validate the downscaled PRCP, 

Tmax and Tmin using NCEP predictors, various measures were evaluated for mean and 

extreme characteristics at monthly scale during the validation 5 years’ period 1996-2000. 

Should keep in mind that NCEP predictors are not used for climate change projections. 

However, understanding SDSM ability using NCEP predictors as opposed to GCM 

predictors can reveal potential deficiencies in GCM predictors when used within the 

SDSM environment. 

 

5.1.3.1 PRCP Validation   

SDSM showed better applicability using monthly, seasonal and annual time series, in 

comparison to the daily time series as the vast majority of previous studies (Mahmood, 

2013; Khan, 2015). Agreement between observed and downscaled monthly PRCP time 
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series is obvious during the validation period as seen in Figure 5.1. The plots were 

accompanied with average R2 of 0.71 and 0.73 and RMSEs of 18.2 and 16.8 mm/month 

comparing to observed range of 0 to 177.5 mm/month using CGCM3 and CanESM2 

respectively. In addition, most of the mean PRCP monthly indices were reproduced 

accurately as shown in Figure 5.2. However, biases were existing to some extent at 

monthly scale but they are almost minor at seasonal and annual scale. Major rainy months 

(Jan, Feb, Mar, Apr, Oct, Nov and Dec) were simulated with good accuracy but May 

which is a month of very little observed PRCP was not. Generally using both GCMs/NCEP 

predictors, wet percentages were slightly overestimated along all major rainy months by 

the approximately total annual percentage increase of 1.5% (6 days) distributed 1-2 

day/rainy-month increase. Mean dry-spell lengths in the rainy months were underestimated 

0.6-2.7 day/per month while the dry spell in May has been overestimated by 5.8 days. 

Mean wet spells were simulated with high accuracy showing minor biases 0.03-0.34 

days/month. However, since SDSM is calibrated with NCEP predictors, the downscaling 

using the GCMs predictors is expected to be accompanied with larger biases. 
 

 

Figure 5.1: Monthly Mean_PRCP time series comparison between observed and 

downscaled PRCP using NCEP predictors (1996-2000) 
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Figure 5.2: Comparison of mean indices between observed and downscaled PRCP using 

NCEP during the validation (1996-2000) 

 

The reproduction of PRCP extremes indices (Figure 5.3) was of less accuracy in 

compare to the mean indices but the biases seem acceptable. Maximum total PRCP 

accumulated over 5-days (Rx5day) was mostly underestimated through the rainy months 

with annual biases that occur in winter of 11.5 and 13.8 mm using CGCM3/NCEP and 

CanESM2/NCEP respectively. Maximum dry spell length (Max_dspel) and maximum wet 

spell length (Max_wspel) were reproduced with good accuracy. However, biases are 

higher in the lowest rainy months (Mar, Apr, May, and Oct) in compare to highest rainy 

months (Jan, Feb, Nov and Dec). Generally, Max_dspel and Max_wspel were 

underestimated by 0.5-4.3 day/month and 0.12-1.1 day/month respectively.  



55 

 
Figure 5.3: Comparison of extreme indices between observed and downscaled PRCP 

using NCEP through the 5 years’ validation period (1996-2000) 

 

The generalized extreme value (GEV) distributions and return period estimates for 

the observed and GCMs/NCEP downscaled maximum daily PRCP at 95% confidence 

level have been averaged over the 23 rainfall stations in the study area and depicted in 

Figure 5.4. The GEV distributions the distributions elucidate that generally using both 

CGCM3 and CanESM2/NCEP, the fit GEV distribution systematically underestimates the 

observed historical extreme events. In addition, both GCMs suggested an approximate 

upper bound of maximum daily PRCP amounting to 120 mm/day relative to the observed 

upper bound of 130mm/day given a bias of 10mm/day. This result was expected because 

the majority of studies on modeling extreme PRCP characteristics from GCMs/NCEPs 

have found that simulated daily PRCP tends to occur more frequently but is less intense 

than observed PRCP (Tryhorn, 2011). The derived average return period values from the 

GEV distribution of the PRCP extreme value series showed that short period extreme 

events up to 5 years were accurately reproduced while long return periods extreme events 

(> 5years) were poorly reproduced.  
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Figure 5.4: Frequency analysis for annual maximum daily PRCP between observed and 

downscaled PRCP using NCEP (1996-2000) 

 

5.1.3.2 Tmax and Tmin Validation 

Monthly mean Tmax and Tmin simulation using GCMs/NCEP predictors were of 

very high accuracy among all temperature stations as displayed in Figure 5.5. Comparing 

the observed and the simulated time series showed average Tmax-Tmin R2 of 0.96-0.97 

and 0.97-0.97 using CGCM3 and CanESM2 respectively. Extreme indices were accurately 

simulated for Tmin comparing to Tmax as shown in Figure 5.6.    

 

Figure 5.5: Comparison of mean indices between observed and downscaled Tmax and 

Tmin using NCEP through the 5 years’ validation period (1996-2000) 
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Figure 5.6: Comparison of extreme indices between observed and downscaled Tmax and 

Tmin using NCEP through the 5 years’ validation period (1996-2000) 
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5.2 Uncertainty Analysis of Current Climate Reproduction 

The confidence on the ability of the downscaling models that generated using GCMs 

predictors to simulate current climate is a prerequisite to being convinced in the future 

climate projection. Therefore, this section will explore the degree of which the downscaled 

output from CGCM3 and CanESM2 predictors for the climate of the twentieth-century 

experiment (20C3M) scenario did reproduce the observed mean and extremes events 

characteristics of the baseline observed scenario 1981-2000 at monthly scale.  

 

5.2.1 Uncertainties in PRCP    

The mean PRCP downscaling was not reasonably well fit showing an average R2 of 

0.31 and 0.35 and RMSEs of 31.3 and 35.8 mm/month comparing to observed range of 0 

to 177.5 mm/month using CGCM3 and CanESM2 respectively.  The PRCP time series 

plot (Figure 5.7) confirm to some degree a plausible agreement between simulated and 

observed but misses the observed extreme PRCP events. The mean PRCP indices were 

generally well reproduced as manifested in Figure 5.8. In general, CGCM3 was 

accompanied with slightly better skill. Based on this, the SDSM is considered 

underperformed and not able to reproduce with good skill the observed PRCP even at 

monthly scale as well as the case at the daily scale. This relatively low explained variance 

for PRCP underlines SDSM poor ability to reflect the stochastic nature of PRCP 

occurrence, magnitude, and the regime variability within the downscaling process 

(compared to temperature). This weakness has been suggested in many studies when 

downscale PRCP (Wilby, 1997; Gachon, 2005; Wilby, 2003; Dibike, 2008).  
 

 

Figure 5.7: Monthly PRCP time series comparison between observed and downscaled 

PRCP using GCMs (1981-2000) 
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Figure 5.8: Comparison of mean indices between observed and downscaled PRCP using 

GCMs (1981-2000) 

 

In general, the extreme events were not well reproduced using both GCMs. The 

monthly maximum consecutive 5 days PRCP (Rx5day) and maximum wet spells 

(Max_wspel) have been underestimated on average by around 25% and 37% respectively. 

On the other hand, maximum dry spells (Max_dspel) has been overestimated on average 

by around 3%. Therefore, no robust confidence can be dragged there between observed 

and GCMs downscaled PRCP extreme events. Accordingly, it can be stated that even a 

multi-model approach is still not able to capture extremities and thus lower confidence 

levels are given to their values. This is common when utilizing GCMs predictors, the IPCC 

TAR reported that low GCM resolution is an inhibiting factor for accurate and detailed 
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evaluation of PRCP extremities (Tryhorn, 2011). Souvignet et al. (2010) also concluded 

that SDSM was not a very robust method for the simulation of extreme PRCP after 

investigating the SDSM performance and ability to simulate extreme events in an arid 

mountainous watershed in Chile using the GCMs predictors.  Liu et al. (2011) showed that 

SDSM performance is relatively poor on extreme events for dry stations with annual 

precipitation lower than 200 mm but fair enough for the wet stations.  Even a nested 

dynamic downscaling approach that was used in Jordan River region underestimate the 

wet day frequency and the strong PRCP events (Smiatek, 2011). However, though the 

systematic errors that accompany the simulating extreme events for PRCP using SDSM, 

the results usually can be considered acceptable for practical applications (Chu, 2010).  
 

 
Figure 5.9: Comparison of extreme indices between observed and downscaled PRCP 

using the GCMs (1981-2000) 

 

The generalized extreme value (GEV) distributions of the maximum daily PRCP that 

fit very well for the observed and GCMs downscaled PRCP are displayed in Figure 5.10. It 

elucidates that generally both CGCM3 and CanESM2 systematically underestimate the 

observed historical extreme events. The CGCM suggested an approximate upper bound of 

maximum daily PRCP amounting to 131 mm/year relative to the observed upper bound of 

147mm/day given a bias of 16mm/day (12% underestimation). The CanESM suggested 
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lower upper bound of 112mm/day and thus higher bias of 35mm/day (25% 

underestimation). In addition, as the return period get shorter, extreme events become 

more accurately reproduced. CGCM3 had caught accurately extreme events up to 30 years 

in compare to 5 years by CanESM2. This makes CGCM more skilled for reproduction of 

PRCP extremities. On the other hand, long return periods extreme events were poorly 

reproduced by both GCMs. These results support the previously stated conclusion that 

long return period extreme events are hard to be reproduced using the GCMs predictors 

within the SDSM (Souvignet, 2011).  

 

Figure 5.10: Frequency analysis for annual maximum daily PRCP between observed and 

downscaled PRCP using GCMs (1981-2000) 

 

In summary, utilizing SDSM in integration with CGCM and CanESM predictors is 

able to reproduce the mean PRCP characteristics but is not for the PRCP extremities. The 

reproduction of the monthly and annually PRCP is much powerful than daily PRCP due to 

the hardship to capture the stochastic nature of PRCP. CGCM provided to some extent 

better skill in downscaling than the next GCM generation CanESM. Generally, the 

downscaling of PRCP seems acceptable; however, the power and weakness in driving a 

hydrological model will be further evaluated in Chapter 6. 

 

5.2.2 Uncertainties in Tmax and Tmin   

The results of the uncertainty analysis are reported for each temperature station 

because SDSM performance using GCMs predictors showed to vary significantly 

according to the station altitude. Ras Muneef is of the highest altitude (1150m a.m.s.l) 

while Baqura is of the lowest altitude (-227m b.m.s.l). The other stations have relatively 

moderate altitudes which are 650, 616 and 332 m a.m.s.l for Um El-Jumal, Irbid, and 

Samar respectively. The results in Table 5.4 indicate that as the altitude decreased, Tmax 
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and Tmin downscaling got more powerful. That was reflected through Tmax-Tmin R2 

increase from 0.77-0.78 up to 0.93-0.90 and from 0.84-.81 up to 0.89-0.92 using CGCM3 

and CanESM2 respectively. This is in agreement with the finding of the nested dynamic 

downscaling approach that was implemented in Jordan River region by Smiatek et al. 

(2011) that showed a significant elevation dependence in the simulation of future climate 

temperature. The elevation dependency has been confirmed previously by Liu et al. (2009)  

after simulating and projecting 116 weather stations in the eastern Tibetan Plateau and its 

vicinity during 1961–2006to examine the relationship between climatic warming and 

elevation. The main finding was the elevation dependency is most likely caused by the 

combined effects of cloud-radiation and snow albedo feedbacks among various influencing 

factors. 

 

Table 5.4: R2 and RMSE of the reproduced Tmax and Tmin using the GCMs (1981-2000) 

*Station 

CGCM3 CanESM2 

Tmax Tmin Tmax Tmin 

R2 
RMSE 

(oC) 
R2 

RMSE 

(oC) 
R2 

RMSE 

(oC) 
R2 

RMSE 

(oC) 

Ras Muneef 0.77 2.36 0.78 2.55 0.84 3.13 0.81 2.63 

Um El-Jumal 0.84 3.20 0.85 2.32 0.86 3.28 0.84 2.25 

Irbid 0.82 3.00 0.83 2.35 0.86 3.07 0.89 2.06 

Samar 0.84 2.91 0.84 2.21 0.86 3.00 0.88 1.97 

Baqoura 0.93 1.94 0.90 1.84 0.89 2.74 0.92 2.02 

*The stations are ordered from the highest to the lowest altitude as it goes down.  

 

Figure 5.11 and Figure 5.12 confirm the SDSM well skill to reproduce daily mean 

air temperature indices. Chu et al. (2010) results also showed that SDSM can reproduce 

very well the mean pattern and numerical values for mean temperature and precipitation. 

Mahmood and Babel (2013) also demonstrated the good applicability of monthly sub-

models of SDSM for downscaling air temperature. 
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Figure 5.11: Mean monthly time series comparison between observed and downscaled 

Tmax and Tmin using GCMs (1981-2000) 
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Figure 5.12: Comparison of mean indices between observed and downscaled Tmax and 

Tmin using GCMs through 20 years’ uncertainty analysis (1981-2000) 

 

The results of comparing extremes indices that displayed in Figure 5.13 suggest a 

lower GCM's capability of reproducing most of Tmin and Tmax extreme events compared 

to NCEP. The altitude influence is clear where the GCM's skill got enhanced as the station 

altitude decreased. CanESM2 was more powerful in Tmax and Tmin extremities 

reproduction.    

In contrast to the systematics underestimation that appeared in the frequency analysis 

of PRCP, Tmax, and Tmin frequency analysis (Figure 5.14) showed no rule with no 

secured ability to reproduce extreme events. However, generally, the extremities of Tmax 

and Tmin are reproduced in acceptable agreement to some extent with the observed 

extremities using both CGCM3 and CanESM2. In addition, the short return period of <5 

years’ events is more accurate than long return period events.  
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Figure 5.13: Comparison of extremes indices between observed and downscaled Tmax 

and Tmin using GCMs (1981-2000) 
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Figure 5.14: Frequency analysis for annual mean Tmax and Tmin between observed and 

downscaled series for the period 1981-2000 at each station 
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5.2.3 Equality of Median  

The non-parametric Mann–Whitney (MW) test was performed for mean monthly 

PRCP, Tmax and Tmin in each station at the 95% confidence level to seek out the null 

hypothesis (H0) that the difference of median between the observed and downscaled 

samples is equal to zero.  The percentages of the stations accepting the test are displayed in 

Figure 5.15. The 100% of accepting test for Tmax and Tmin provide a very high 

confidence in the ability of CGCM3 in downscaling them. On the other hand, more 

uncertainties arise in the case of CanESM2 downscaling of Tmax and Tmin. Therefore, 

Tmax and Tmin choice of the GCM that used for downscaling is of important influence on 

the reproduction of the observed median. In the case of PRCP, both CGCM3 and 

CanESM2 showed similar significant reproduction percentages of the observed median by 

approximately 80%. Thus, a good confidence can be dragged in the ability of CGCM3 and 

CanESM2 in downscaling monthly PRCP.   
 

 
Figure 5.15: Percentage of accepting Mann–Whitney test (equality of median) 

 

5.3 Climate Change Projections 

The annual mean surface air temperature change and precipitation percentage change 

of projected downscaled climate scenarios along the 21st century relative to the simulated 

baseline period 1981-2000 are going to be presented hereafter. The projected PRCP is 

expected to increase slightly in the 2020s for both A1B and A2 scenarios and then decline 

after that. RCPs scenarios project continues declination in PRCP through as seen in Figure 

5.16.  

Downscaled mean Tmax and Tmin are projected to increase steadily under all 

scenarios as Figure 5.17 and Figure 5.18 display.  In general, under the various scenarios, 

there will be a continuous reduction in precipitation and increase in temperature. This is 
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consistent with the previously quantified observed trends of precipitation and temperature 

in the YRB over the last decades of the 20th century. A summary of the projected scenarios 

combination annual temperature difference and precipitation percentage change during the 

intervals of interest in the 21st-century is shown in Table 5.5. The amount of increase in 

temperatures will range between 0.9oC and 3.7oC, while the percentage of change in 

precipitation will vary from +6% to -32% among the scenarios.  

Generally, the basin is expected to undergo drought conditions that will increase in 

intensity and duration along the 21st century especially under the worst scenarios RCP4.5, 

RCP8.5 and A2 due to the increased evapotranspiration and thus surface drying. 

Meanwhile, the water holding capacity of air will increase due to more water vapor that 

was estimated previously by 7% increase in vapor per 1oC warming. This air moisture 

increase affects the various storm forms including individual thunderstorms, extratropical 

rain or snow storms, or tropical cyclones by causing more intense precipitation events even 

if precipitation quantities are decreasing as they say ‘it never rains but it pours’ (Trenberth, 

2011). This is already have been observed to happen from time to time in the study area 

leading to potential increased risk of flooding (Khordagui, 2014). However, it is not 

necessarily that the projected climate is being likely. That is because there are various 

intrinsic uncertainties associated with the GCMs and the used downscaling technique 

(Prudhomme, 2009).   

 
 

Figure 5.16: The projected percentage change in PRCP 



69 

 

Figure 5.17: The projected difference change in Tmax 

 

 

Figure 5.18: The projected difference change in Tmin.  

 

Table 5.5: The projected scenarios using CGCM3 and CanESM2 GCMs 

Period RCP2.6 RCP4.5 RCP8.5 A1B A2 

2011-2040 
+0.89˚C 

-9.5%P* 

+0.90˚C 

-12.7%P 

+0.92 ˚C 

-12.9%P 

+1.56˚C, 

+5.9%P 

+1.14˚C, 

+0.5%P 

2041-2070 
+1.25˚C 

-16.8%P 

+1.54˚C 

-18.62%P 

+2.01˚C, -

18.46%P 

+2.42˚C 

-12.02%P 

+2.27˚C 

-16.28%P 

2071-2099 
+1.21˚C 

-19.03%P 

+1.79˚C 

-25.48%P 

+3.20˚C 

-31.63%P 

+3.10˚C 

-22.46%P 

+3.61˚C, 

-28.66%P 

 P is the precipitation 

 

Spatially, the climate changes were drawn at the hydrological response unit scale 

after delineating the basin using SWAT. This because those changes will determine the 

impact on the basin hydrology analysis under the current and future climate changes using 

SWAT. The map that shows the precipitation percentage change is depicted in Figure 5.19. 
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The maps that depict Tmax and Tmin difference change are shown in Figure 5.20 and 

Figure 5.21 respectively. The maps track the changes over the 30 years’ intervals 2011-

2040, 2041-2070 and 2071-2099 relative to the 15 years’ simulated baseline climate 

(1986–2000).  

It is clear that the amount of climate change varies from place to another. CGCM3 

and CanESM2 GCMs consensus that there will be widespread precipitation decrease and 

temperature increase under all scenarios. Those changes are considered of negative impact 

on the basin hydrology. The PRCP special distribution showed that the PRCP decrease 

more from south to north. Even there will be an increase in PRCP in the basin far southeast 

and southwest which their current climate characterized with low precipitation 

<200mm/year. The PRCP percentage changes may vary from -60% to 100% of the various 

scenarios. Spatial distributions of Tmax and Tmin showed that temperature increase is 

higher wherever the elevation get lower. However, the spatial distribution of temperature 

is of lower accuracy in comparison to PRCP due to the low number of used temperature 

stations within the YRB.  The difference change of temperature varies spatially between -

1oC and +5oC among the various scenarios. RCPs projected climate changes show larger 

variations than the SRES scenarios. RCPs shows higher PRCP decrease toward the north 

but in the same time high PRCP increase toward the far south.  

In general, highland areas are the least vulnerable to the warming even, in contrary 

the highlands may witness cooling conditions under low relativity CO2 concentration 

increase scenarios. However, the spatial changes revealed no coherence where no clear 

spatial correlations can be derived. However, changes seem to get worse toward the 

northern-eastern territories. These wide spatial changes in the YRB support what Samuels 

et al. (2011) conclusion that due the Jordan River Basin complex topography, even small 

differences in the spatial scale will lead to different climate changes across the area.  In 

terms of political boundaries, the Jordanian side is expected to be the least vulnerable and 

even, on the contrary, its territories are expected to increase in rainfall though it will be 

presented to high-temperature increases. 
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Figure 5.19: Spatial percentage change in annual average PRCP in comparison to the 

simulated baseline scenario (1986-1990) 
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Figure 5.20: Spatial projected change of annual average surface Tmax (˚C) in comparison 

to the simulated baseline scenario (1986-1990) 
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Figure 5.21: Spatial projected change of annual average surface Tmin (˚C) in comparison 

to the simulated baseline scenario (1986-1990) 
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Chapter Six:  Hydrologic Response Evaluation 

This chapter is devoted to present the results of predicting the spatial and temporal 

hydrologic response to the projected climate changes in the YRB using the Soil and Water 

Assessment Tool (SWAT) model for the pre-development and post-development 

conditions. In addition, the adaptation measures capable of minimizing the impacts of 

climate change will be elaborated on based on the literature review, governmental reports, 

and personal interviews.  

 

6.1 Sensitivity Analysis, Calibration, and Validation 

6.1.1 Pre-Development Conditions  

It’s important to determine the most significantly sensitive combination of parameters 

because parameters represent the processes. Therefore, the recognition of those parameters 

will illustrate what are the dominant processes in the hydrological cycle within the study 

area. In addition to that, it’s well known that over-parameterization can affect a distributed 

hydrological model efficiency drastically making it necessary to reduce the parameters via 

an efficient sensitivity analysis (Whittaker 2010; Abbaspour 2007).  

A preliminary sensitivity analysis had been executed to determine the most sensitive 

parameters based on experience, data availability, and relevant literature as well as the 

global sensitivity analysis of the candidate parameters. Previous studies of hydrology 

modeling using distributed models in adjacent basins to the YRB in Jordan included the 

ones by Al-Abed and Al-Sharif (2008), Abdulla et al. (2009), and the modeling of the 

Jordanian Yarmouk basin part by Hammouri et al. (2011).  

The eight top significantly sensitive parameters that used to calibrate the model as well 

as the calibrated values and the realistic uncertainty ranges that had been used are shown in  

Table 6.1. The global sensitivity analysis results of the calibrated parameters are shown in 

Figure 6.1. These relative sensitivities estimate the average change in the objective 

function Nash-Sutcliffe efficiency when changing the targeted parameter while all other 

parameters are changing which gives partial information about the parameters sensitivity. 

The larger t-test-value and the smaller p-value are the more sensitive significantly 

(Abbaspour, 2007).  
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Table 6.1: The calibrated parameters and its ranges under the pre-development conditions 

Sensitive 

parameter 
Definition 

Estimated 

value 

Calibrated 

value 
Units 

Realistic 

uncertainty range Hydrologic 

process 
Min Max 

CN2 Curve number 76.7 65.88 None 60 90 Runoff 

SOIL_AWC2 Available water capacity of the soil layer 2 0.098 0.11 mmH2O/ 

mm soil 

0.07 0.18 Soil 

SOL_Z2 Depth of soil surface to the bottom  1000 1100 mm 900 1300 Soil 

ESCO Soil evaporation compensation factor 0.7 0.4 None 0.2 1 Evaporation 

SOL_K1 Saturated hydraulic conductivity 1.49 5.01 mm/hr. 1 10 Soil 

GW_DELAY Groundwater delay 365 400 Days 300 500 Groundwater 

GW_REVAP Groundwater revap coefficient  0.12 0.02 None 0.02 0.2 Groundwater 

CH-K Effective hydraulic conductivity in main 

channel alluvium 

0 0.5 mm/hr. 0 2 Channel  
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Figure 6.1: The calibrated parameters global sensitivity results within its realistic 

uncertainty ranges against the objective function Nash-Sutcliffe Efficiency (NSE) 

 

For the model calibration, only monthly values of streamflow were used. It is very 

clear that the curve number (CN) which controls the flow partitioning into runoff and 

baseflow is the most sensitive parameter. This is actually a generality about CN for being 

the most important parameter when modeling the hydrologic response using SWAT (Van 

Griensven, 2006). The CN was reduced to 65 from its estimated value of 76 to assure 

enough recharge to the shallow aquifer so more match the estimated 55% baseflow/flow 

fraction. The second and third most sensitive parameters are the available water capacity 

(SOL_AWC) that measure of the ability of the soil to hold water and soil layer depth from 

its surface (SOL_Z). In addition to those parameters, there is the lower sensitivity saturated 

hydraulic conductivity (SOL_K) parameter that governs how much-infiltrated water would 

percolate to the shallow aquifer. Capturing this percolation process is very important in the 

YRB that’s about 55% of its flow is due to a large number of springs discharge in the river 

that regarded as return flow. It’s supposed that a balance exists between the springs 

discharge and percolated water but this is not the case where evaporation can remove the 

percolated water wherever the water-table rises enough to allow capillary action to bring 

the water into the zone of evaporation (Burdon, 1954). Because of that, those two 

parameters let to be adjusted seeking baseflow/flow ratio greater than 55% by increasing 

the SOL_AWC and SOL_Z within the allowed range. The fourth sensitive parameter is the 

evaporation compensation factor (ESCO) that govern soil evaporation calculations. The 

ESCO and the least sensitive groundwater re-evaporation (GR_REVAP) parameter were 

reduced to 0.4 and 0.02, respectively to extract more from the evaporative demand 

(Neitsch, 2011). This made the model able to simulate the dominant process of evaporation 
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were on average 0.81 of precipitation evaporates in the YRB as was estimated previously 

(Burdon, 1954).  

The rest four sensitive parameters had been tuned the stream flow regime to match as 

possible the observed regime. The most influential parameter in tuning was the ground 

water delay time (GW_DELAY) that measures how long it takes for water to leave the 

root zone bottom to the shallow aquifer so can become return groundwater flow (Neitsch, 

2011; Spruill, 2000). Large enough GW_DELAY days do smooth the release of 

groundwater over the entire year so the model becomes able to catch the stream baseflow 

response during no-rainfall months from June to September. The effective hydraulic 

conductivity (CH_K) that control the transmission losses to infiltration in the subbasin 

channels was increased to 0.5 mm/hr from its default 0 mm/hr that reflect the consolidated 

high silt-clay nature of the bed of the channel.  This adjustment of CH_K allowed the 

simulated discharge peaks to be lowered and smoothed while keeping the water balance 

cycle intact.  The water balance cycle components after the calibration have been done are 

believed to be in the appropriate range assuming that the model did simulate the processes 

within a realistic sense. 

Table 6.2 summarizes the calculated objective function for both streamflow datasets 

for validation (1986-1995) and calibration (1996–2000). The time series plots of the 

observed and modeled streamflow at monthly and annual scales are depicted in Figure 6.2 

and Figure 6.3 respectively. During the calibration evaluation measure are NSE = 0.66, 

RSR=0.58, PBIAS = -41.4 and small R-factor of 0.27 but still small P-factor 0.33. The 

modeling is further better on an annual basis as can be seen in Figure 6.3 providing R2 of 

0.92 and 0.87 for calibration and validation periods, respectively. It can be seen also that 

the winter-month flows were consistently overestimated by the model and peak flows were 

also overestimated for the high annual rainfall years.  

 However, the model performance during the calibration is not as good as the 

validation period based on the objective functions values in Table 6.2 and the monthly 

time discharge plot (Figure 6.2) at the best simulation match. That can be attributed to the 

SWAT modeling sensitivity to varied climatic measured datasets if representing drought, 

wet or average conditions as demonstrated by Wu and Johnston (2007). It was found that 

drought-calibrated version can perform much better than average conditions in the 

validation period. Additionally, the modeling using SWAT has a high sensitivity toward 

long return period storms. This applies to the current study where calibration period 

included the very long return period 1992 snow and rain storm.  
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Given the challenges in modeling the whole YRB due to Syrian part poor quality of 

data, soil map low scale and discharge extrapolation to resemble the historical flow regime 

during the calibration period, it is surprising that the model can still simulate the discharge 

with such satisfactory accuracy. 

Table 6.2: Summary of the objective functions during the calibration and validation 

periods under the pre-development conditions 
 

Objective function Calibration (1986-1995) Validation (1996-2000) 

R2 0.87 0.81 

NS 0.66 0.80 

RSR 0.58 0.45 

PBIAS -41.4 9.5 

Mean_sim(Mean_obs) (m3/s) 16.37(12.07) 8.65(9.56) 

StdDev_sim(StdDev_obs) (m3/s) 21.90(18.69) 13.03(10.83) 

 

 

Figure 6.2: Measured and simulated monthly streamflow for the YR at Addasiya station 

as well as the monthly observed precipitation under pre-development conditions 
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Figure 6.3: Measured and simulated annual streamflow for the YR at Addasiya station as 

well as the annually observed precipitation under pre-development conditions 

 

The annual hydrologic water cycle components after the calibration have been 

finished are believed to be in the appropriate range. This is, in turn, let the authors assume 

that the model did simulate the processes within a realistic sense. The simulated 

hydrologic water cycle ratios during the calibration and validation that are shown in Figure 

6.4 are comparable to the estimated average ratios relative to the annual precipitation by 

Burdon (1954) of 0.81 evapotranspiration, 0.16 streamflow (0.55 baseflow and 0.45 

surface runoff) and 0.01 deep aquifer recharge.  It’s clear again that evapotranspiration is 

the dominant hydrologic process in the basin. Evapotranspiration is larger whenever dry 

conditions prevailed where it was 0.76 under average-wet calibration period and 0.83 

under the validation dry conditions. This evapotranspiration variability affects the basin 

very much causing substantial variability in the basin annual water yield.   
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Figure 6.4: The simulated hydrologic water cycle components during the calibration and 

validation 

 

6.1.2 Post-Development Conditions 

The basin hydrological processes general circulation had been calibrated using a 

similar approach to the one used under the pre-development conditions plus management 

incorporation in the model. The most sensitive parameters and its calibrated values are 

shown in Table 6.3. The sensitivity analysis results are shown in Figure 6.5 that indicate 

that CH-K and CN are the most sensitive parameters.  The automated calibration provided 

R-factor of 0.58 and P-factor of 0.52. The obtained objective functions values are shown in 

Table 6.4 for the calibration and validation periodsThe objective function values confirm a 

very good accuracy in compare to those under the pre-development conditions. In addition, 

a very clear and well-match is there between the observed and simulated of the monthly 

and annually flow regimes that are shown in Figure 6.6 and Figure 6.7 respectively. The 

results illustrate a satisfactory and better modeling for the stream flow under the post-

development conditions.  

This better performance is attributable to the larger flexibility to calibrate the model 

through the basin water management parameters. Such calibration enhancement was 

reported by Ouessar et al. (2009) after modeling the runoff water-harvesting systems using 

SWAT in an arid watershed in southeast Tunisia, which receives about 200 mm annual 

rainfall. 
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Table 6.3: The calibrated parameters and its ranges under the post-development conditions 

Sensitive 

parameter 
Definition 

Estimated 

value 

Calibrated 

value 
Units 

Realistic 

uncertainty 

range 

Hydrologic 

process 

Min Max 

CN2 Curve number 83.4 76.8 None 60 90 Runoff 

SOIL_AWC2 Available water capacity of the soil layer 2 0.098 0.12 mmH2O/ 

mm soil 

0.07 0.15 Soil 

ESCO Soil evaporation compensation factor 0.8 0.7 None 0.5 0.1 Evaporation 

GW_DELAY Groundwater delay 365 450 Days 300 500 Groundwater 

GW_REVAP Groundwater revap coefficient  0.12 0.02 None 0.02 0.2 Groundwater 

CH-K Effective hydraulic conductivity in the main 

channel alluvium 

2 11 mm/hr. 2 15 Channel  
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Figure 6.5: The selected parameters global sensitivity results within its realistic 

uncertainty ranges against the objective function Nash-Sutcliffe Efficiency (NSE) under 

the post-development conditions. 
 

 

Table 6.4: Summary of the objective functions during the calibration and validation 

periods under the post-development conditions 

Objective function Calibration (1986-1995) Validation (1996-2000) 

R2 0.89 0.81 

NS 0.88 0.80 

RSR 0.35 0.45 

PBIAS 13.2 9.5 

Mean_sim(Mean_obs) (m3/s) 4.25(4.89) 2.78(2.56) 

StdDev_sim(StdDev_obs) (m3/s) 12.51(12.62) 6.35(5.04) 
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Figure 6.6: Measured and simulated monthly stream streamflow for the YR as well as the 

monthly observed precipitation under post-development conditions 

 

 

Figure 6.7: Measured and simulated annual streamflow for the YR at Addasiya station as 

well as the annually observed precipitation under post-development conditions 
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6.2 Climate Change Impacts 

6.2.1 Pre-Development Conditions  

The impact of climate change on YR flow regime and water cycle components under 

pre-development conditions was evaluated by driving a satisfactorily calibrated SWAT 

model under the projected 21st-century climate change scenarios. In this vein, the basin has 

been treated as a virgin basin without any manmade changes which are often useful to 

establish a first level adaptation strategy (Gosain, 2006).  In addition, this is going to make 

it possible to evaluate how manmade changes affect the vulnerability of the basin to the 

climate change when comparing the impacts under the pre-development with the post-

development conditions. The scenarios applied were the SRES A1B and A2 and CMIP5 

RCP2.6, RCP4.5 and RCP8.5 scenarios (Table 5.5) that had been downscaled from the 

CGCM3 and CanESM2 climate variables output, respectively. The temporal climate 

change impacts were quantified at both monthly and annual scales.  

The percentage changes during the 30 years’ intervals 2011-2040, 2041-2070 and 

2071-2099 average monthly simulated stream flow over the 21st century relative to the 15 

years’ simulated baseline weather scenario (1986–2000) are shown in Figure 6.8. SRES 

A1B and A2 tend to project minor impacts in basin streamflow ranging between -1.9% and 

7.2% by the end of 2040. In the other hand, CMIP5 RCPs scenarios project much higher 

reduction ranging between 32.7% and 40 % by 2040. The annual average streamflow is 

projected to decline between 37.7%-58.0% and 38.4%-67.3% by the end of 2070 and 2099 

respectively based on which path the CO2 concentration will increase. Samadi et al. (2013) 

also suggest that there will be a significant reduction of streamflow, particularly in winter 

after studying how SDSM downscaled climate projections will affect future streamflow in 

a similar semi-arid catchment in Iran.  

However, the obvious disproportionate change that has been reflected in a large 

reduction in average annual streamflow versus low relatively precipitation amount changes. 

In addition, the peak discharges may be underestimated where Chen et al. (2011) 

demonstrated that regression-based statistical methods such as used in SDSM usually 

produce considerable reductions in peak discharge. This is can be ascribed to the uncertain 

downscaled daily precipitation falling pattern. Where it is well known that precipitation 

characteristics are just as vital as the amount, in terms of the effects on the soil moisture 

and stream flow (Trenberth, 2011; Liu, 2011). Here, though the downscaled precipitation 

has kept significantly the observed precipitation characteristics, its falling pattern may 
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contain high uncertainties. The downscaled patterns in this study tended to some degree to 

have more prematurely precipitation and more often wet days with daily underestimated 

rainfall intensity. This is, in turn, let most precipitation falling to infiltrate to saturate the 

soils with no substantial amount available for surface runoff. In addition, the infiltrated 

water will become more exposed to evapotranspiration that will reduce and delay the 

contribution to the groundwater flow leading eventually to disproportionately low total 

flows. This is actually the case with most climate change models in the world in terms of 

producing too large water recycling and a too short lifetime of moisture in the atmosphere 

which influence surface runoff and soil moisture (Trenberth, 2011).   
 

 
Figure 6.8: Average YR discharge change percentage under the climate applied change 

scenarios for the pre-development conditions 

 

The YRB hydrologic water cycle components modeling during the 15 years’ baseline 

period (1986-2000) demonstrated reasonable output and realistic interactions among them. 

The simulated amounts of the hydrologic cycle components evapotranspiration (ET) and 

water yield (WY) which represent the average amount of fresh water that runs off in an 

unregulated watershed are summarized in Table 6.5 and Table 6.6 for the RCPs and SRES 

scenarios respectively. The annual hydrologic cycle ratios of evapotranspiration and water 

yield relative to the annual precipitation under the climate change scenarios are exhibited 

in Figure 6.9.  
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Table 6.5: Simulated monthly hydrologic water cycle components under the RCPs climate change scenarios in mm where P, is the precipitation, 

ET is the evaporation and WY is the water yield 

Period Water budget component Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Baseline 

1986-2000 

P 76.44 50.62 59.11 15.89 5.34 0 0 0 0.13 13.6 40.28 38.86 

ET 33.49 42.92 57.49 49.86 17.3 1.75 0 0 0.02 8.66 21.25 21.35 

WY 7.83 7.35 7.67 2.69 2.45 2 1.9 1.75 1.57 1.66 3.05 5.46 

RCP2.6 

2011-2040 

P 59.1 53.31 60.64 18.51 3.15 0 0 0 0 12.35 36.38 55.24 

ET 34.29 45.32 60.44 49.98 21 2.02 0.01 0 0 7.43 19.16 27.74 

WY 4.16 4.52 4.67 2.47 2.05 1.76 1.67 1.54 1.38 1.74 1.77 3.08 

RCP2.6 

2041-2070 

P 52.1 49.66 59.63 13.29 2.47 0 0 0 0 10.85 32.92 48.93 

ET 32.37 42.74 57.48 45.29 16.33 0.82 0.01 0 0 6.83 17.75 26.01 

WY 3.34 3.42 4.68 2.1 1.75 1.52 1.44 1.33 1.19 1.35 1.56 2.23 

RCP2.6 

2071-2099 

P 52.73 43.49 60.37 14.72 3.83 0 0 0 0 12.88 34.04 50.19 

ET 32.19 40.82 56 46.27 17.15 0.88 0 0 0 8.31 17.41 25.1 

WY 3.68 3.34 4.45 2.26 1.93 1.67 1.58 1.46 1.31 1.54 1.7 2.83 

RCP4.5 

2011-2040 

P 60.27 50.08 61.97 17.01 3.29 0 0 0 0 13.1 36.34 45.85 

ET 33 44.3 60.15 48.97 19.17 1.34 0 0 0 8.01 18.99 26.35 

WY 4.34 4.14 4.46 2.32 1.79 1.54 1.46 1.34 1.2 1.38 1.63 2.44 

RCP4.5 

2041-2070 

P 45.94 45.65 57.4 15.45 3.58 0 0 0 0 11.88 36.55 44.96 

ET 31.12 40.83 55.94 45.1 16.16 0.66 0 0 0 7.23 18.55 25.69 

WY 2.5 2.65 4.02 1.47 1.28 1.04 0.98 0.9 0.8 1.06 1.23 1.85 

RCP4.5 

2071-2099 

P 48.42 41.94 50.21 15.11 4.04 0 0 0 0 12.2 31.72 42.82 

ET 30.82 40.1 51.95 41.26 14.59 0.66 0 0 0 7.68 17.29 24.58 

WY 2.93 2.96 2.91 1.42 1.17 0.95 0.9 0.82 0.73 1.19 1.15 1.76 

RCP8.5 

2011-2040 

P 60.23 50.35 58.23 16.49 2.89 0 0 0 0 12.15 33.46 45.38 

ET 33.2 45.03 58.2 47.41 19.63 1.25 0 0 0 7.43 17.81 25.95 

WY 4.06 4.08 4.7 2.15 1.67 1.45 1.37 1.26 1.13 1.29 1.58 2.38 

RCP8.5 

2041-2070 

P 47.38 40.07 50.94 12.88 3.78 0 0 0 0 10.06 33.15 47.9 

ET 31.51 39.36 51.81 40.6 13.79 0 0 0 0 6.61 16.86 26.22 

WY 3.03 2.55 3.03 1.3 1.06 0.9 0.85 0.78 0.69 0.96 1.25 2.18 

RCP8.5 

2071-2099 

P 47.26 37 49.16 12.36 2.59 0 0 0 0 11.36 24.97 41.35 

ET 30.15 37.91 50.13 37.9 9.06 0 0 0 0 8.15 14.41 23.47 

WY 2.53 1.97 2.61 1.05 0.88 0.75 0.7 0.64 0.57 0.69 0.83 1.43 
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Table 6.6: Simulated monthly hydrologic water cycle components under the SRES climate change scenarios in mm where P is the precipitation, 

EV is the evaporation and WY is the water yield. 

Period Water budget component Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

CGCM3 

Baseline 

(1986-2000) 

P 75.55 51.61 58.82 17.23 4.01 0 0 0 0.13 13.72 41.54 63.8 

EV 36.17 44.08 60.12 52.33 18.59 1 0 0 0 8.93 20.29 28.48 

WY 9.73 8.45 8.07 3.39 2.92 2.57 2.45 2.27 2.04 2.13 3.49 7.11 

A1B 

2011-2040 

P 71.05 61.25 66.2 20 3.18 0 0 0 0 10.81 45.22 69.22 

EV 37.95 48.81 67.83 56.79 20.2 2.61 0 0 0 7.76 22.31 31.85 

WY 7.67 8.96 8.56 3.84 3.17 2.81 2.69 2.49 2.23 2.28 2.84 5.19 

A1B 

2041-2070 

P 60.26 43.64 62.96 16.35 3.06 0 0 0 0 10.09 35.8 56.79 

EV 34.08 42.22 59.78 51.21 15.75 0.83 0 0 0 7.74 18.99 27.73 

WY 5.32 4.03 5.34 2.11 1.71 1.49 1.41 1.3 1.17 1.23 1.73 3.71 

A1B 

2071-2099 

P 52.93 39.17 51.28 14.4 2.67 0 0 0 0 10.65 35.3 48.6 

EV 31.86 38.91 52.52 42.76 11.13 0.37 0 0 0 7.58 18.77 25.44 

WY 4.61 3.53 4.53 1.77 1.4 1.22 1.16 1.07 0.96 1.04 1.68 3.23 

A2 

2011-2040 

P 66.21 57.59 60.47 19.24 2.62 0 0 0 0 7.05 46.91 70.54 

EV 35.55 46.61 63.45 53.42 18.98 2.01 0 0 0 5.37 22.72 32.34 

P 9.25 7.54 7.93 3.43 2.73 2.41 2.3 2.13 1.91 1.92 2.6 5.59 

A2 

2041-2070 

EV 59.91 43.27 56.82 15.85 3.81 0 0 0 0 11.74 39.3 51.33 

WY 32.69 39.89 58.1 46.91 14.56 1.05 0 0 0 8.44 20.75 27.71 

P 6.61 5.5 5.14 2.21 1.78 1.55 1.48 1.37 1.22 1.32 1.98 3.01 

A2 

2071-2099 

EV 45.22 35.36 52.5 14.35 2.81 0 0 0 0 9.47 35.57 44.52 

WY 28.72 35.74 52.17 42.56 9.75 0.23 0 0 0 7.05 18.67 24.98 

P 3.28 3.6 3.59 1.32 1.1 0.96 0.91 0.83 0.75 0.87 1.78 2.29 
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Based on the results, average monthly water yield continues to decline for each 

month for all scenarios with the largest decreases being in Winter months Jan, Feb, and 

Dec. Average annual water yield results also exhibited similar continuous reduction as the 

average monthly water yields. The largest relative severe decline in average annual water 

yield was 60.1% against 31.4% precipitation decrease and 3.2oC temperature increase 

under RCP8.5 (Figure 6.9). The evaporation/precipitation ratio is going to gradually 

increase under all scenarios with largest changes is expected under the scenario RCP8.5 of 

10.6% increase by the end of 2099 relative to its baseline value of 85% (Figure 6.8). The 

partitioning into base flow and surface runoff is almost unaffected under the SRES A1B 

and A2 scenarios in comparison to its baseline scenario. On the other hand, the base flow 

contribution for the total steam flow will increase under all CMIP5 RCPs scenarios at the 

expense of the reduction of surface runoff contribution. 
 

 

Figure 6.9: Simulated annual hydrologic water cycle ratios change under the climate 

change scenarios for the pre-development conditions 
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The spatial analysis of annual evapotranspiration (Figure 6.11) and water yield 

(Figure 6.12) changes across the YRB has been performed at subbasin level relative to its 

simulated baseline scenario.  The baseline period reveals that the least evapotranspiration 

areas are in the basin middle east areas composing 28% of the total basin area where 

rainfall is the highest and average temperature is the least while the rest of basin is 

characterized with high evapotranspiration. This, in turn, is reflected in the fact that the 

most productive areas of water are the basin middle east areas as it contributes a 

percentage of 81% of the total basin water yield. These areas extend from Jabal Al-Arab to 

the east feeding Al-Batm, Negev, Al-Thalith, Abu Al-Dhahab, and Rimah Valleys that 

slowly flowing westward draining into the Harir and Zeizun streams and eventually pour 

into the YR as can be seen in Figure 6.10. The diverse scenarios applied predict that 

evapotranspiration increase and water yield decrease will be ubiquitous across the basin 

except for the basin southwest where the opposite is expected. The degree of vulnerability 

to climate change will vary across the basin where the wet areas will experience the largest 

amount of impact particularly the basin middle east. Overall, the spatial impacts are not 

coherent though it can be said that drought conditions will creep north to south and east to 

west. In terms of political boundaries, the Jordanian side is expected to be the least 

vulnerable to the drought climate changes and even, on the contrary, its territories are 

expected to increase in rainfall and thus water yield. That will be accompanied by no 

change in evapotranspiration rates, on average, and even may reduce in some scenarios. 
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Figure 6.10: Yarmouk River Basin main valleys and its catchment areas 
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Figure 6.11: Spatial difference in annual average evapotranspiration/precipitation (ET/P) 

in comparison to the simulated baseline scenario (1986-1990) for pre-development 

conditions 
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Figure 6.12: Spatial projected percentage change in annual average water yield in 

comparison to the simulated baseline scenario (1986-1990) for pre-development conditions 
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6.2.2 Post-Development Conditions 

The implemented management practices within a watershed affect the hydrologic 

water cycle components and the flow regime highly. Therefore, including the water 

management as close as possible to the reality within the hydrological model will enhance 

the model substantially so becoming abler to retrieve more accurately the impacts (Arnold, 

2005). Here, the impacts of climate change in the YRB after the post-development 

conditions that feature modeling the irrigation and the primary runoff water-harvesting 

system are going to be presented. 

Temporally, the basin vulnerability toward any potential climate change has been 

found to be dependent on the basin water resources storing, diversion schemes and the 

consumptive water use. The projected reduction in the river discharge under various 

climate change scenarios is shown in Figure 6.13 relative to the baseline period 1986-2000 

for the post-development conditions. The discharge reduction results illustrate that the 

change percentage will vary from -0% to -36.4% under post-development conditions 

comparing to -2.6%-60% under the pre-development conditions (see Figure 6.8). This 

makes the authors form a perception that the management of water resources will reduce 

the risks of climate change, by reducing evapotranspiration compared to what will be if the 

watershed kept at its virgin conditions. This can be explained that the water exposed to the 

evaporation will become less dramatically though the increase of evaporation rate display. 

These impacts are considered proportionate under the projected climate change scenarios. 

Similar proportionate results were reached by Samuels et al. (2010) and Kunstmann et al. 

(2007) after driving the distributed hydrological models with climate change scenarios 

within the Jordan River area.  

Spatially, the evapotranspiration will increase with varying percentage and may 

decrease in few locations based on the nature of the location. The water yield will decrease 

with varying amount and may increase in few locations based on the nature of the location. 

The Northeastern locations are expected to witness the highest increase in 

evapotranspiration and the lowest decrease in water yield. These spatial variations of the 

climate change impacts are important for the adaptation measures plans such as water 

harvesting that prefers the locations of the lowest evapotranspiration and the highest water 

yield. 
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Figure 6.13: Average YR discharge change percentage under the applied climate change 

scenarios for the post-development conditions 

 

Overall, these results are in agreement with IPCC 5AR results based on the observed 

20th-century climate changes and climate modeling that regions which are dry currently 

are expected to become further drier while wet regions will become further wetter though 

some local conditions can flip the case (Stocker, 2013). In addition, the common potential 

runoff decrease in the Jordan basins is in agreement with the climate change impact study 

performed by Abdulla and Al-Omari (2008) when applying a precipitation decrease and 

temperature increase climate change scenarios on an adjacent basin. However, it should be 

kept in mind that an assessment of the basin vulnerability toward the projected climate 

change does not necessarily indicate that those impacts are likely especially in the light of 

the obvious intrinsic uncertainty of the GCM climate projections as well as other sources 

of uncertainty including the downscaling technique, the hydrological modeling, observed 

daily rainfall, observed runoff and the applied management practices. This impact 

assessment will only provide a worthy insight into the watershed hydrologic response 

sensitivity against the potential precipitation reduction and temperature increases based on 

its current conditions. This can boost the water resource strategic plans in the riparian 

countries of the YRB efficiently.  
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6.3 Adaptation Measures 

Adaptation refers to dealing with the impacts of climate change that involves taking 

practical actions to manage risks from climate impacts, protect communities and 

strengthen the resilience of the economy (IPCC, 2014). The Jordan’s National 

Communication reports on Climate Change in 2009 and 2014 have provided a 

comprehensive vulnerability assessment and addressed thoroughly potential adaptation 

measures to mitigate the impacts of climate change in Jordan (Framework Convention on 

Climate Change (UNFCCC) 2009; Framework Convention on Climate Change 

(UNFCCC) 2014). Based on the reports, the author's knowledge, personal interviews, and 

the climate change impact assessment that has been performed in the YRB, the most 

properly feasible and effective combination of adaptation measures is going to be 

presented.  

The combination of desalination, water harvesting as well as wastewater reuse plans 

in Jordan is expected to make Jordan able to adapt to climate change. The currently under 

construction Red Sea Desalination Project (RDP) will provide about 550 MCM of 

desalinated water per year by the year 2022 (Jordan Valley Authority, 2016a). Al-Omari et 

al. (2014) have investigated the role of RDC project in adapting to climate change using 

the WEAP model for the climate scenarios; the business as usual (BAU) scenario and the 

climate change (CC). It was found that the implementation of the RDC project will satisfy 

the domestic demand from 2022 till 2050 and reduce the deficit (currently 250-300 MCM) 

in agricultural demand for the Jordan Valley (currently 250-300 MCM) by about 

195 MCM and 85 MCM for BAU and CC scenarios respectively. These positive 

implications of the project are due to the increased treated wastewater flow to the valley 

from Azaq-Zarqa Basin (AZB) and the conservation of groundwater resources. Bonzi et al. 

(2016) stated that the positive effects of desalination and the increased use of treated 

wastewater in the project area can be strongly limited by insufficient water transport 

infrastructure and/or a lack of cooperation. This statement was derived after integrating the 

socio-economic scenarios and water management strategies resulting from a stakeholder 

process using WEAP model under four regional scenarios up to the year 2050 within the 

Global Change and the Hydrological Cycle (GLOWA)-Jordan River project.  

Jordan has come a long way in the field of macro water harvesting. A FAO 

evaluation report of the water-harvesting sector in Jordan proved that water harvesting 

assists the Government of Jordan to meet its stated objectives for agricultural water 

management (Food and Agriculture Organization (FAO) 2016). In addition, the national 
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communication reports on climate change have given water harvesting the highest 

propriety as adaptation measure because it is feasible, efficient, and easily to be 

implemented with reasonable costs. Currently, more than 300 water-harvesting sites spread 

in the highlands, Jordan Badia, the pastoral areas of desert, and areas in which 

groundwater resides on the far depths with low quality with a storage capacity of 108 

MCM. No exact amount available about the water-harvesting contribution in the national 

water budget due to the lake of the monitoring system in the water harvesting sites. Based 

on the current plans, the creation of water harvesting sites will continue until the year 2019, 

where the size of the harvesting will grow at the rate of 1.5-2 MCM per year. However, 

water harvesting sector still needs to handle the issue of assuring a site economic viability 

or sustainability. Many water-harvesting sites are either of small size or uncertain to be 

filled each year or far from the main roads particularly those in the Jordan Badia letting 

farmers non-encouraged to start projects around (Jordan Valley Authority, 2016b). No 

widespread practice of micro-scale water harvesting is available yet in Jordan. A study 

performed in Jordan by Abdulla and Al-Shareef (2009) recommended the spread of micro 

water harvesting after showing that a rooftop of 100m2 can easily harvest around 32m3 per 

year, where the average design-rainfall is about 400 mm per year and the losses are about 

20%. On-farm rainwater micro-harvesting can be applied easily to increase the water 

available for supplementary irrigation, i.e. small farm ponds for micro irrigation using drip 

or sprinkler irrigation systems (Framework Convention on Climate Change (UNFCCC) 

2014). 

Wastewater treatment and reuse in the agricultural sector is a feasible option and 

already in use in Jordan. Actually, Jordan is one of few countries in the world of the 

highest centralized WWTP coverage and almost 91% of treated wastewater is reused for 

agriculture to reallocate fresh water for domestic purposes. The current and planned central 

WWTP are expected to treat 240 MCM per year by 2025. However, the centralized 

wastewater requires technical expertise, massive operation and maintenance costs which 

may present issues that reduce it’s the WWTPs capacity. This leads to a call to expand the 

decentralized wastewater treatment also especially for farmers. Actually, few households 

currently own and operate decentralized wastewater treatment units due to either the 

knowledge and/or the financial lack. Boosting decentralized wastewater treatment can be 

achieved by establishing a good strategy to aware and prompt farmers to install 

decentralized units. It is expected that; the capacity of the suggested decentralized units 

can reach 200m3/day (Ministry of Water and Irrigation, 2016). 
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Chapter Seven: Summary, Conclusions, and Recommendations 

7.1 Summary 

The present study has been implemented for the sake of making available some 

comprehensive simulations of precipitation and temperatures changes and its related 

impact on the hydrology of the trans-boundary Yarmouk River Basin (YRB) that is shared 

between Jordan and Syria. The climate changes were forecasted using statistical 

downscaling approach using the SDSM tool of two global climate models (GCMs) under 

various GHS emission scenarios for three future intervals: 2011–2040, 2041–2070, and 

2071–2099. A total of 13 mean and extreme indices, frequency analysis and Mann-

Whitney statistical test were evaluated to explore SDSM skill. In addition, this study has 

underlined the challenge of downscaling semi-arid mean and extreme climate using the 

SDSM. After that, the downscaled climate changes have been used to drive a well-known 

and reliable distributed physically-based hydrological model which is the Soil and Water 

Assessment Tool (SWAT) to evaluate the climate change impact on the YRB hydrology. 

At final, an efficient combination of adaptation measures has been outlined presented 

based the author's overviews.   

 

7.2 Conclusions 

• The precipitation decrease, temperature increase, drought/dry days’ increase and 

evaporation increase are the main determinants of climate change risks in the YRB. 

• The YRB vulnerability to the downscaled climate change is relatively high and the 

basin can undergo severe impact under the worst scenarios by the end of the 21st 

century unless something to be done to stop, mitigate or adapt to the continued 

climate changes. 

• Water storage and harvesting of rainwater modeling in the YRB has significantly 

reduced evaporation because the available quantities for evaporation become less, 

which is the basic process in which a basin water yield that located in the dry or 

semi-dry region gets lost.  Hence, the basin becomes abler to adapt to the climatic 

changes expected. Additionally, this will add to the flood prevention measures that 

such basin is highly exposed to. 
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7.3 Recommendations 

The main recommendations arising from this study for future researchers are: 

• During the modeling process, a specific database for the Yarmouk River Basin has 

been prepared which is equivalent to the USA basins database system. Those 

researchers can use these data easily for other management objectives such as 

sediment yield modeling, water quality modeling and non-point sources loads of 

pollution estimation.  

• The statistical downscaling at monthly scale using the software SDSM cannot be 

executed by popping out an overflow error as long as there are whole months 

without rain, which is the case in most areas that have dry or semi-dry climate such 

as the Yarmouk River Basin. Hence, it is required the user to provide fictitious 

rainfall amounts and then modify the parameters in the calibration files to zero for 

the dry months which raise doubts and difficulty for the user to use the model. 

Therefore, it is advised to the SDSM developers or who are interested in developing 

in the model to study this problem and its impact on the statistical downscaling as 

well as trying to solve it by modifying the SDSM code so the model SDSM can 

execute normally even for the dry months. 

• The statistical downscaling method is able to project a dry or semi-dry climate 

satisfactorily with accepted uncertainty such as the projections have been obtained 

in this study. However, there still remains the need to develop a dynamical regional 

model (RCM) on the level of the country or the region to forecast more accurately 

how climate would change in the coming decades and compare it with the statistical 

downscaling projecting.  
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محاكاة الميزانية الهيدرولوجية لمياه حوض اليرموك مكانيا وزمانيا تحت تأثير كل من 

 المناخ الحالي والتغيرات المناخية المتوقعة مستقبليا

 إعداد: الهام وليد سعود الشرفات

 الملخص

الم تكبلية من خلال محاكاه المناخ الحالن بدقه قدر الم تطاع  المناخيةبتوقع التغيرات  البدايةقمنا ين  ،الدراسةين هذه 

صغر يمثل من نطاقها الكبير ال  نطاا أ (GCMs) العالمية المناخيةتصغير نماذج الدوران ل SDSMذج وبواسطه نم

ين  عبر الكرن الواحد والع رين الكبر  والصغر  الحرارةالهطول ودرجات قغير لتوقع الحوض الهيدرولوجن 

م احة   وذو ردنادر المياه ين الأهم مص، حوض اليرموك هو من أردن وسورياحوض اليرموك الم ترك بين الأ

الري ال به جا  مما يتطلب  البحر الأبيض المتوسطمناخ  ويمتلك  2كم 7004حي  قبلغ م احته حوالن  ن بيا   كبيرة

ذلك  الدييئة وشملعدة سيناريوهات لانبعاث الغازات  المناخية قحتقم قوقع التغيرات  ،ديمومة الزراعةالم تمر ل

سيناريوهات انبعاث غاز و CanESM3 GCMبواسطة  RCPsثانن أك يد الكربون  الم ارات الممثلة لتركيز غاز

أن معدل عل  ال يناريوهات  اق كت التوقعات ويا جميع ،CGCM3 GCMبواسطة  SRESثانن أك يد الكربون 

 ينين حين ست تمر درجة الحرارة  %30-وقد يصل إل   تمر ين الانخ اض يهطول الأمطار ال نوي سو  

وقف ظاهرة الاحتباس ل يتم بذل جهود عالميةريو ما لم سوأ سيناويكا لأيرا س ˚3.5قصل إل   ا وقدقدريمي الازدياد

 عل  عدم الدقةكان هناك ثكة إحصائية جيدة ين هذه التوقعات بناء عل  نتائج قحليل  ،الحراري أو التخ يف منها

محاكاة عل  لديه قدرة جيدة  SDSM نموذج أنإل  النتائج التن قوصلنا إليها  توضحأو ،وال نوي ال هري م تو ال

نمط هطول الأمطار  عل  محاكاه لكن أقل قدرةووالمتطرية  ةالمتوسطودرجات الحرارة  لمن خصائص الهطو كلا  

 اتتغيرالقأثير قعُن  بدارسة مرضية لأي دراسة  بثكة بيانات هذه التوقعات ومع ذلك، يإنه يمكن اعتماد ،اليومن

 حوض نهر اليرموك. عل  المناخية

اليرموك قحت  ين حوض المائية الموازنةعل  قديا نهر اليرموك ومكونات التغير المناخن قأثيرات  قوقعبعد ذلك، قم 

نمذجة لتحكيا هذا الهد ، قم  ،ومكانيا   نيا  ازم نميةوبعد الت )1950(قبل  نميةالت الحوض قبلظرو  كل من 

مرضية كانت  ةذجنمال التكييم أنت معايير ) وقد أشارSWATالمياه (التربة وقكييم هيدرولوجيا الحوض باستخدام أداة 

انخ اض  رايا معتالتبخر الذي سي ارق اع متوسط سيؤدي إل قغير المناخ أشارت النتائج أن  ،عل  الم تو  ال هري

ل قان مخاطر التغير المناخن أ ظهرت الدراسة أيضا  عل  نطاا واسع مكانيا، وأقديا المماري المائية و الإنتاج المائن

 نهار وقحويل بعض المماري حي  يكلل ذلكوالأ مياه المماري قخزين نمذجة ظرو  أدارة الحوض منر بعد يبكث

الحدود ال ياسية يتوقع ان قأثيرات التغير المناخن سو  قكون  ناحيةمن  ،للتبخر من كميات المياه المعرضة كثيرا  

تغير الالعديد من الطرا ال عالة للتكيف مع آثار  الأردنية مكارنة بالأراضن ال ورية وان هناكالأقل ين الأراضن 

نولوجيات وقعزيز قك الصحن،مثل حصاد المياه، واستيراد المياه الايتراضية، وإعادة استخدام مياه الصر   نالمناخ

 .الري وقحلية مياه البحر


